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1. Introduction

Many financial markets around the world, including
the Paris, Stockholm, Shanghai, Tokyo, and Toronto stock
exchanges, are organized as limit order books. In addition,
aspects of a limit order book are also incorporated into
markets such as Nasdaq and the NYSE. In spite of the
dominance of this market form, there is no dynamic
model of information-based trade in which investors can
choose to submit either market or limit orders.
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Understanding dynamic order choice under asym-
metric information is important because rational agents
use different trading strategies for different assets. The
characteristics of an asset (such as the volatility of
changes in the fundamental value of the asset) affect
whether agents acquire information about the asset,
which in turn affects the trading strategies they employ,
and thus the relationship between the fundamental value
of an asset and its price or other market observables.
Specifically, the information content in a limit order book
differs depending on whether informed agents submit
limit orders and the prices at which they do so. Therefore,
to infer the fundamental characteristics of an asset from
market observables, or the information content in ob-
servables, it is important to understand how agents’
trading behavior differs across assets. We conduct a
systematic study of a limit order market with asymmetric
information to determine the effect of asset character-
istics on trading behavior and market outcomes.
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In our model, risk-neutral agents arrive randomly at
the market for an asset that has both common and private
components to its value. Agents have different informa-
tion about the common value (i.e., the present value
of the future cash flows on the asset). Each agent chooses
either to buy or sell one share. If his order does not
execute, he revisits the market and can revise his order. A
trader may reenter the market an arbitrarily large number
of times before execution. Thus, agents face a dynamic
problem: the actions they take at any point in time
incorporate the possibility of future reentries. In addition,
an agent may face adverse selection: prior to his first
entry into the market, each agent chooses whether to buy
information about the fundamental value of the asset. An
informed agent views the current expected value of the
cash flows on each entry, whereas an uninformed agent
forms an estimate of this value based on market
observables.

A model that incorporates the relevant frictions of limit
order markets (such as discrete prices, staggered trader
arrivals, and asymmetric information) does not readily
admit a closed-form solution. As a result, we use
numerical methods to solve for equilibrium. Once the
algorithm has converged, we then simulate trader arrivals
and analyze the results to determine the properties of
market outcomes. Our paper is methodologically related
to Goettler, Parlour, and Rajan (2005) but examines a
different set of questions, and therefore presents a richer
model. Most importantly, in this paper we model asym-
metric information about the fundamental value of the
asset. Thus, we can analyze the relationship between the
volatility of changes in the fundamental value, the degree
of asymmetric information, and transaction prices.

In our model, all traders are risk-neutral. Thus, the
volatility of the fundamental value matters because it
affects the value of the option provided to other agents by
a limit order submitter. As a result, in equilibrium, this
volatility affects liquidity provision, and hence, the overall
informativeness of market observables such as transaction
prices and order depths.

Overall, our findings include:

e Agents with no intrinsic motive for trade (i.e., spec-
ulators) are willing to pay the most for information,
and also submit the bulk of limit orders to the market.
Competition among speculators results in private
information often being reflected in the limit order
book.

e However, speculators supply less liquidity when the
asset is more volatile. Instead, they opportunistically
exploit their information and place market orders.
Therefore, in high volatility assets, recent transaction
prices are more informative (compared to bid and ask
quotes) about the true value of the asset, and thus
about future prices, than in low volatility assets.

e Depth in the limit order book is also informative about
the true value of the asset. However, depth at and away
from the quotes has different effects. Thus, selling
pressure (depth at the ask) tends to lead to lower
prices, whereas dispersion on the sell side (depth away
from the ask) tends to lead to higher prices.

e There is a “volatility multiplier” effect: assets with
high fundamental volatility also exhibit greater vola-
tility in the microstructure noise (i.e., the deviation of
transaction price from estimated fundamental value).
In an ideal frictionless market, all trades should occur
at the fundamental value, and the microstructure noise
should be identically zero. Thus, the volatility of the
microstructure noise is a measure of the level of
trading frictions in the market. The effect is exacer-
bated when only speculators are informed, since
quotes are more often set by uninformed traders.

More broadly, the set of agents posting the best limit
prices (on either the buy or sell side) changes across time,
leading to transaction prices that depart from the
fundamental value of the asset. In our model, agents’
responses to market frictions naturally create a time
variance in transaction prices. This suggests that one
explanation for time-varying expected returns or betas
may be changes in the composition of the types of agents
wishing to trade at any particular point of time.

In our simulations, transaction prices do not respond
instantaneously to changes in the fundamental value, and
the degree of inertia depends on both the volatility in the
fundamental value and the proportion of agents who
acquire information. The inertia, in turn, implies that the
microstructure noise displays positive autocorrelation,
and is negatively correlated with changes in the funda-
mental value. Further, changes in the microstructure noise
are negatively correlated with changes in the estimated
fundamental value, with the degree of correlation varying
with the asset volatility, and the extent of asymmetric
information.

These properties are important to account for in
decomposing the transaction price into the efficient price
(i.e., the fundamental value) and microstructure noise.
Further, the negative correlation between changes in the
microstructure noise and changes in the fundamental
value implies that betas estimated in an asset
pricing regression will be too low. This opens up the
possibility that microstructure effects (including proxies
for liquidity or idiosyncratic risk) may spuriously
attain explanatory power in cross-sectional asset pricing
regressions.

Our theoretical predictions are consistent with recent
work that uses high-frequency stock market data. For
example, Hansen and Lunde (2006) consider the stocks in
the Dow Jones Index, and find that in many cases the
microstructure noise is negatively correlated with the
fundamental value. Ait-Sahalia, Mykland, and Zhang
(2006) show that, controlling for trade reversals, the
remaining component of microstructure noise displays
positive autocorrelation for stocks such as Microsoft and
Intel. Bandi, Moise, and Russell (2006) show that innova-
tions in microstructure volatility may be a priced factor.

To estimate microstructure noise, Engle and Sun
(2007) use reduced form statistical models. Diebold and
Strasser (2007) base their estimates on the insights from
static microstructure models. Such models have no role
for the history contained in a limit order book, and its use
in determining the expected value of the asset. In contrast,
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our model is dynamic and shows the informativeness of
the limit order book in predicting future price changes.

An extensive literature explores endogenous informa-
tion acquisition in a rational expectations framework.
Hirshleifer (1971) observes that, in an exchange economy
with risk-averse traders, information has no social value:
if all agents are informed, risk-sharing opportunities are
eliminated and the market breaks down.! Grossman and
Stiglitz (1980) note that if costly information is immedi-
ately impounded into price, agents should not acquire it.
Clearly, the argument depends on how agents profit from
their information, so the results are specific to a price
formation mechanism.? Thus, a model with endogenous
information acquisition should include stylized represen-
tations of the most important trading frictions. Previous
general equilibrium work with endogenous information
acquisition considers noise in the aggregate asset supply
(e.g., Verrecchia, 1982; Admati and Pfleiderer, 1987) or
“noise” traders with exogenous demands (Barlevy and
Veronesi, 2000) to ensure that prices are only partially
revealing. Our market is inherently dynamic, with the
common value of the asset changing over time. In a
temporal sense, informed traders are local monopolists.
Hence, there can at best be partial revelation.

Risk-averse noise traders are considered in a Kyle
(1985) framework by Spiegel and Subrahmanyam (1992),
who demonstrate that these traders reduce the amount
they trade in the presence of adverse selection. Mendelson
and Tunca (2004) consider an informed insider who takes
into account the effect of his acquiring information on the
orders of risk-averse noise traders. Since market prices are
partially revealing, the gains to trade are reduced when
the insider acquires information. Thus, even at a zero cost,
the insider may choose to not acquire information. Since
traders are risk-neutral in our model, neither of these
effects is present.

When there are multiple informed traders in a Kyle-
type model, Foster and Viswanathan (1996) show that the
correlation between informed traders’ signals is impor-
tant in determining the speed of information revelation.
Imperfect correlation eventually leads to a waiting game,
so the equilibrium is characterized by less trade in later
periods. As a result, the market may become illiquid
towards the end of the overall trading period. If the initial
correlation of traders’ signals is low enough, less informa-
tion may be revealed than with a monopolist informed
trader. Their numerical results are confirmed by Back, Cao,
and Willard (2000) in a continuous time model. In our
model, informed traders know the common value on each
entry into the market. However, the common value
changes over time. Hence, though signals are imperfectly
correlated, agents have an incentive to act on information

! Hakansson, Kunkel, and Ohlson (1982) demonstrate that informa-
tion can have social value if the market is not allocationally efficient.
Bernardo and Judd (1997) find that information acquisition reduces
welfare both because uncertainty is resolved before trade (the
Hirshleifer effect) and because rent-seeking trades by informed agents
reduce optimal risk-sharing.

2 For example, Jackson (1991) demonstrates that the price-taking
assumption is critical in order to sustain the Grossman-Stiglitz paradox.

before it becomes stale due to an exogenous change in the
common value, and the market remains active.

Early work on the endogenous choice of limit versus
market orders by informed traders includes Chakravarty
and Holden (1995), who show that an optimal mix of limit
and market orders leads to a higher payoff than submit-
ting market orders alone, when there is uncertainty about
the price at which market orders will execute. Kumar and
Seppi (1994) also have informed investors submitting
both limit and market orders, to avoid being detected in
the midst of uninformed traders who are also employing a
mix. Kaniel and Liu (2006) show that informed traders
will use limit orders when information is sufficiently
persistent. In our model, information is short-lived, but
informed traders nevertheless submit a large proportion
of limit orders. If they did not, uninformed traders would
be faced with severe adverse selection, and would set
wide spreads.

Our paper builds on the recent literature on dynamic
limit order markets with strategic traders.> For example,
Rosu (2007) presents a continuous time private value
model of a limit order market with continuous prices and
instantaneous punishment strategies. Foucault, Kadan,
and Kandel (2005) characterize equilibrium in a dynamic
limit order book with private values and differences in
time preferences. None of these models consider informa-
tion acquisition, or allow agents to differ in what they
observe upon entering (or reentering) the market. Back
and Baruch (2007) consider a continuous time model with
asymmetric information, and demonstrate that, in the
absence of frictions, market design is irrelevant (every
equilibrium in a limit order market can be sustained as an
equilibrium on a floor exchange with competitive market-
makers, and vice versa). Our paper is complementary, in
that we explicitly model frictions in a limit order market.

We outline our model in Section 2. Details of the model
and numerical algorithm appear in the Appendix. In
Section 3, we consider the value of information to
different types of traders, and exhibit equilibria with
endogenous information acquisition. Next, we examine
how trader behavior and the resulting quotes differ with
asymmetric information and fundamental properties of
the asset in Section 4. We consider the price distortions
introduced by the limit order market, and the asset pricing
implications of these distortions, in Section 5. Section 6
concludes.

2. Model

We consider a dynamic model of trade in a single
financial asset. Before participating in the market, traders
decide if they want to become informed. After making
their information acquisition decision, agents trade. In the
market, time is continuous, and traders arrive randomly.
A trader has one share to trade and may choose to buy or
sell the asset. Traders also choose the price at which they

3 Early work includes Parlour (1998), who characterizes a limit order
market with no common value, and Foucault (1999), who models a
common value, but truncates the book to one share.
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place their order. If the order is not executed, the trader
randomly returns to the market and can cancel and
resubmit his order. Any unexecuted trader may reenter
the market, which potentially allows a trader to repeat-
edly revisit the market before execution. The reentry and
endogenous cancellation represent a significant modeling
improvement over Goettler, Parlour, and Rajan (2005),
who treat cancellation as exogenous, so that each trader
essentially enters the market only once.

We turn to each of the model elements in more detail.

The limit order book is characterized by a discrete set of
prices, # = {pf}fi_oo, at which traders may submit orders.
The tick size or distance between any two consecutive
prices is normalized to one. Associated with each price
pl € 2 at time t is a backlog of outstanding orders to buy
or sell the asset, ¢.. This backlog is the depth at price p'.
We adopt the convention that a positive quantity denotes
buy orders and a negative quantity sell orders. The limit
order book at time t, L ={¢}®__, is the vector of
outstanding orders.

Given a limit order book L, the bid price or quote is
B(L) = max{i|¢' >0}, the highest price at which there is a
limit buy order on the book, and the ask price or quote is
A(L) = min{i|' <0}, the lowest price at which there is a
limit sell order on the book. If the corresponding set of
prices is empty, define B(L) = —oo and A(L) = oc.

Limit orders are executed according to time and price
priority: that is, orders submitted earlier are further ahead
in the queue. Buy orders at higher prices and sell orders at
lower ones are accorded priority. Therefore, an order
executes if no other orders have priority, and a trader
arrives who is willing to be a counterparty. Further, limit
orders are marketable; an order to buy at a price above the
ask executes instantaneously at the ask, and is called a
market order in what follows.

Traders: New traders arrive at the market according to
a Poisson process with parameter A. Each trader is allowed
to trade at most one share of the asset: however, he may
choose to buy or sell that share. On any entry, a trader may
choose to submit an order for one share, or to not submit
any order.

A trader who previously entered the market, but who
has not yet traded a share, reenters the market at a
random time determined by a Poisson process with
parameter A, Reentry, therefore, is not instantaneous,
and represents a friction agents must take into account
when submitting an order. The reentry friction captures
the idea that agents do not continuously monitor the
market. Traders are potentially active until their order
executes, at which time they leave the market forever.
Thus, at any point of time, there will be a random number
of agents who have not yet traded. Each of these agents
has the opportunity to reenter the market, even if they
have done so previously. Thus, a trader may have several
market visits before finally executing.

Upon reentry, a trader may leave an existing order on the
book or cancel it and submit a new order. The benefit of
retaining the existing order is that he maintains his time
priority (his place in the queue). The cost is that the asset
value may have moved in a manner that affects the
expected payoff from the order. For example, if he

submitted a buy order and the asset value has since fallen,
his order may now be priced too high. Conversely, if the
asset value has since risen, his order may be at too low a
price, and there may be little chance of it executing. Further,
a trader may also find that the priority of a previous order
has changed by the time he reenters the market.

Information: At any instant t the asset has a common or
fundamental value, denoted v;. The fundamental value is
the expectation of the present value of future cash flows
on the stock, and evolves as a random walk. Innovations in
the fundamental value occur according to a Poisson
process with parameter p. If an innovation occurs, the
fundamental value increases or decreases by k ticks, each
with probability 1 Changes in the fundamental value
reflect new information about the firm or the economy.
On his first entry to the market, an agent may choose to
buy information by paying a cost c>0. Incurring this cost
gives an agent access to a service that reports the current
value of v on this and each subsequent entry. Since all
investors have a chance to acquire the information, it is
publicly available: for example, information reported in
financial statements, Securities and Exchange Commission
(SEC) filings, or analyst reports, or prices of related assets
such as options.

Uninformed agents view v with a time lag, 4,
measured in units of time. That is, an uninformed agent
in the market at time t knows v;_,,, whereas an informed
agent in the market at time t knows the current value v;.
What is important for our results is that one group of
agents has a better estimate of the value of the asset.
Modeling the uninformed as those observing v with a lag
is a tractable way of doing this.

In addition, all agents observe the history of the game.
Let t denote a time at which an agent has entered the
market, and let h; denote the history up to time t, before
the agent takes an action. The history includes all actions
in the game until time t as well as changes in the
fundamental value until time t (for informed traders) and
time t — 4, (for uninformed traders). For all agents, the
limit order book L; provides information about current
trading opportunities. Uninformed agents use their in-
formation set to update their expectation about the
fundamental value v. The history offers strategic informa-
tion to informed agents as well: using the information
available to an uninformed agent allows informed agents
to better predict the actions of uninformed agents, and
thus earn a higher payoff themselves.

Traders’ optimization: Each trader has a type 0 = {p, a},
where p is a discount rate and « a private value for the
asset. The payoff a trader earns as a result of trading is
discounted back to his first arrival time in the market at
the rate p. The cost of delaying trade could include an
opportunity cost (e.g., if a trader is executing a trading
strategy across different assets and must delay trades
in other assets) and a cost to monitoring the market
before execution, rather than the time value of money.*

4 Traders in some financial markets appear to care about differences
in seconds in the time to execution; the discount rate captures this desire
to trade early.
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The private value o represents private benefits of trade,
accruing to a trader as a result of liquidity shocks or
private hedging needs, and is independently drawn across
traders. Let F, denote the distribution of «. Traders are
risk-neutral and submit orders to maximize their expected
discounted payoff. Utility is earned only if an order
executes. For a particular trader 0 = {p, o}, the instanta-
neous utility at time t is

o+ v, —p' if he executes a buy order at price p' and time ¢,
ur =< p'—a—v, if he executes a sell order at price p' and time t,
0 if he does not execute an order at time t.

(1)

The expected payoffs to different actions depend on a
trader’s information set. For each agent, this includes his
private valuation for the asset, o« and information about v;.

Equilibrium: To find the equilibrium of the model, we
first fix information acquisition strategies for each type of
trader, and then solve for optimal trader strategies in the
resulting trading game. The payoffs in the trading game
then allow us to determine the information costs which
sustain the conjectured information acquisition strategies.

In the trading game, each time a trader is in the
market, he chooses an action that maximizes his expected
discounted utility, given the state he observes. Optimal
strategies in this model, therefore, are state-dependent. If
a state is defined to be the history of events in the game
observed by the trader, his decision is Markovian.

Formally, the trading game is a Bayesian game. Traders
have privately known utilities from trade (since a trader’s
o is unknown to other traders) and possibly private
information about the fundamental value v. As Maskin and
Tirole (2001) point out, the proper solution concept here is
Markov perfect Bayesian equilibrium, which requires traders
to play dynamically optimal strategies on each entry into the
market, given their current beliefs. We focus on stationary,
symmetric equilibria, in which each type of trader chooses
the same strategy, and this strategy does not depend on the
time at which the trader arrives at the market.

Solving for equilibrium: Since an analytic solution is not
feasible, we numerically solve for equilibrium in the
trading game, using a natural extension of the simulation-
based algorithm of Pakes and McGuire (2001) for
complete information games. A transparent difference is
that different agents have different state variables (since
some agents may know the fundamental value v, whereas
others do not). In this algorithm, traders start with beliefs
about payoffs to different actions, and update these beliefs
when they take an action and observe its realized payoff.
A key step in updating their beliefs over different actions
is determining the expected fundamental value of the
asset when an agent is uninformed.

In principle, the state for a trader includes the entire
history of the game. However, in order to make the
problem computationally tractable, we need to impose
specific restrictions on the state space.” In the Appendix,

5 In particular, these restrictions exclude some potentially payoff-
relevant variables, such as the exact time at which different events
happened.

we provide a detailed mathematical description of the
trader’s decision problem, the state space used in the
simulations, the algorithm used to obtain a numerical
solution of the trading game, and the convergence criteria.
To ensure that traders learn the payoffs to all available
actions, we require them to tremble (i.e., choose actions
that are suboptimal given their current beliefs) with small
probability while the algorithm is converging.

2.1. Numerical parameterization of the trading game

For our numeric simulations, we use parameters that
have been identified by the existing empirical literature.

e We normalize the mean time between new trader
arrivals, 4, to one. A unit of time in our numerical
solution thus represents the average time between
new trader arrivals. In any stationary equilibrium,
trades must happen on average every two periods. If a
period is assumed to be one minute long, approxi-
mately 180 trades would occur in the course of a
normal trading day.

e On average, a trader reenters the market after four

units of time. Reentries are independent across traders
and entries.
Numerically, it is straightforward in the algorithm to
consider reentry rates that differ across types and
trader information. In this paper, however, we are
primarily interested in isolating the effects of differ-
ential information on market outcomes, so we keep the
reentry rate the same across informed and uninformed
traders. Conceptually, we think of reentry rates as
depending on the cost of monitoring the market, with a
lower monitoring cost implying a higher rate of
reentry.

e The support of the discrete o distribution in ticks is
{—8,—4,0,4,8}. The probabilities are 15% each on —8
and 8, 20% each on —4 and 4, and 30% on zero. A tick in
the simulation corresponds to one-eighth of a dollar.
The traders with o = 0 constitute traders who may be
willing to buy or sell, depending on the state of the
market when they arrive. We refer to these agents as
“speculators,” since they have no intrinsic motive to
trade. The traders with a € {4, 8} are likely to be buyers,
and those with o € {—4, -8} are likely to be sellers.
These characterizations are borne out in our simula-
tions.

Our private value distribution approximately corre-
sponds to the findings of Hollifield, Miller, Sandas, and
Slive (2006), who estimate the distributions of private
values for three stocks on the Vancouver exchange.
Since they consider a world with symmetric informa-
tion, their estimate of the gains to trade likely
represents an upper bound (since some trading will
occur for informational reasons). Our parameterization
of F, is based on their identification of three types of
traders within these distributions. They find that, on
average across the three stocks, 44% of traders have
private values within 2.5% of the fundamental value of
the stock, 26% have values that differ from the
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fundamental value by 2.5% to 5%, and 30% have values
that differ from the fundamental value by more than
5%. This corresponds approximately to the probabilities
of our three kinds of traders. In terms of ticks, on
average across the three stocks, 2.5% of the funda-
mental value translates to approximately 3.45 ticks,
and 5% of the fundamental value to approximately 6.9
ticks.

e Changes in v, the fundamental value of the asset, occur
at times drawn from a Poisson distribution with the
expected time between changes being eight units of
time. We consider two sets of models:

(i) Low volatility: whenever v changes, it increases or
decreases by one tick, each with probability 1.

(ii) High volatility: whenever v changes, it increases or
decreases by two ticks, each with probability 1.

Our low volatility parameterization also roughly
corresponds to the findings of Hollifield, Miller, Sandads,
and Slive (2006). For the three stocks they consider,
they report the volatility of the midpoint of the bid and
ask quotes over 10-minute intervals, to be approxi-
mately 1.70%. Using a stock price of $15, that translates
to a variance of $0.065025 (or six cents) over a 10-
minute interval. With a tick size of one-eighth, the
variance in ticks over a 10-minute interval is 4.16 ticks.
The midpoint of the bid and ask quotes is a rough
proxy for the fundamental value. Assume that two
units of time in our model correspond to one minute of
real time. Since / denotes the expected number of
innovations to the fundamental value in one unit of
model time, over a 10-minute period we have on
average 204 innovations. In the low volatility case,
since each innovation corresponds to one tick, the
expected sum of squares of changes in the funda-
mental value is also 201 over a 10-minute interval.
Using 4 =0.125 (so that an innovation occurs every
eight units of model time on average), the expected
sum of squares of changes in the fundamental value
over a 10-minute interval in our model is 2.5 (in ticks)
in the low volatility case, and 10.0 in the high volatility
case. Since our innovation process has a zero mean, the
expected sum of squares is comparable to the variance
reported by Hollifield, Miller, Sandas, and Slive (2006).

e We set 4;, the lag with which an uninformed trader
observes v, to be 16 units of time. We varied 4; in our
simulations, increasing it to a maximum value of 128,
and found no significant differences in the results for
larger values.

e p, the continuous discount rate, is the same for all
agents and is set to 0.05. Recall that this is not the time
value of money, but rather a preference parameter that
reflects the cost of not executing immediately.®

e Limit orders may be submitted at any feasible price
that lies in a range between 6.5 ticks above and below
an agent’s expectation of v. For an informed trader, this

5 We experimented with lower values of p, and found the results to
be qualitatively similar. However, traders took longer to execute on
average, and the recursive set of states (which determines the
algorithm’s speed) was considerably larger.

expectation is just the current value of v. For traders
who observe v with a lag 4, this expectation is their
best estimate given the lagged fundamental value, the
current book, and the observed market history.”Market
orders, of course, may be submitted at the current bid
(market sells) or ask (market buys) regardless of an
agent’s expectation of v.

3. Information acquisition and trading behavior

Traders only acquire costly information if they can use
it to sufficiently increase their expected payoff in the
trading game. Rational agents who do not acquire
information, however, anticipate that informed agents
may be present in the market, and therefore adopt trading
strategies that account for this fact. We start by analyzing
the gains to acquiring information, given that all traders
know other agents’ information acquisition strategies.

3.1. Information acquisition

To determine each trader type’s willingness to pay for
information, we fix agents’ information acquisition stra-
tegies and solve for equilibrium in the trading game. Thus,
we take into account how agents’ strategic behavior
changes in response to adverse selection. We consider
symmetric equilibria in which all agents with a given o
(i.e., private value) take the same action at the information
acquisition stage. We then consider the payoff to a
particular type who deviates.

Radner and Stiglitz (1984) demonstrate that informa-
tion is valuable to a single Bayesian decision-maker only if
it induces a change in her action. In our model,
speculators are the agents most likely to change their
action (i.e., switch from buying to selling the asset, or vice
versa) based on information about the value of the asset.
Indeed, we find that speculators have the highest will-
ingness to pay for information. Verrecchia (1982) shows a
similar result in a general equilibrium rational expecta-
tions framework—the least risk-averse agents (i.e., those
with the lowest intrinsic motive to trade) acquire costly
information.

Observation 1. Agents’ willingness to pay for information
decreases in the absolute value of o.

To reach Observation 1, we examine different informa-
tion regimes. In each regime, we first fix the information
acquisition strategy of each trader type. Once the algo-
rithm has converged, we hold agents’ beliefs fixed, set the
tremble probability to zero, and simulate a further 300
million market entries (including reentries by returning
traders). The outcomes obtained by traders in the new

7 We simulated versions of the models in which limit orders could
be submitted further away from the fundamental value. Although orders
were occasionally submitted at such ticks, these orders rarely executed,
appearing to substitute for not submitting an order at all. There was no
appreciable effect on market outcomes, either in the aggregate or for any
particular type of trader.
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Table 1

Average gross payoff in ticks to each type of trader, across different information and volatility regimes.

This table shows the average payoff in ticks to each type of trader in different information and volatility regimes. The type of a trader is indicated by the
value of o. Since the model is symmetric, positive and negative o values with the same absolute value are combined for reporting purposes. The row
labeled “Equilibrium” shows the payoff to each trader type in equilibrium. The row labeled “Deviation” shows the payoff if that type of trader were to
deviate in information acquisition. The averages are determined as mean payoffs over 300 million market entries (including new and returning traders).
Standard errors on the mean payoffs are less than 0.0005 for equilibrium strategies and less than 0.0020 for deviator strategies. Payoffs in italics indicate

informed agents.

Low volatility High volatility
Information regime Value of |o| Value of |«|
0 4 8 0 4 8

All agents informed Equilibrium 0.438 3.511 7.319 0.555 3.452 7.180

Deviation 0.230 3.424 7.258 0.321 3.301 7.057

Value of information 0.208 0.087 0.061 0.234 0.151 0.123
Speculators informed Equilibrium 0.675 3.454 7177 0.883 3.181 6.871

Deviation 0.432 3.514 7.190 0.406 3.458 7.083

Value of information 0.245 0.060 0.013 0.477 0.277 0.212

simulation are averaged to determine the expected
consumer surplus (i.e., the equilibrium payoff or expected
utility) for each type.®

Next, we allow a small mass of each type (2%) to
deviate in information acquisition and then trade opti-
mally. We ensure that at most one deviator is present in
the market at any given time, to preserve the spirit of
unilateral deviation. Non-deviator agents in the simula-
tion play the same strategies as in the equilibrium of the
original trading game. The strategies and payoffs for the
deviators (and only the deviators) are determined afresh
by the algorithm. Again, once the algorithm has con-
verged, we hold the deviators’ beliefs fixed and simulate a
further 300 million trader entries, to determine expected
payoffs to the deviators.

The gross payoff (i.e., ignoring the cost of acquiring
information) of each type in each of two information
regimes (all agents acquiring information, and only
speculators acquiring information) is reported in Table 1,
for both the low and high volatility cases.® All payoffs are
quoted in ticks. The value of information to each type of
agent is represented by the difference in payoffs between
being informed and remaining uninformed.

As seen from the Table 1, in both volatility regimes, the
value of information decreases in the absolute value of o.
Information is most valuable to speculators (i.e., agents
with o = 0), who have no intrinsic benefit to trade. These
agents are willing to take either side of the market,
depending on the available payoff. Conversely, agents with
o =8 are unlikely to switch from buyers to sellers, so

8 We use a large number of simulated traders so that standard errors
of measures of interest are sufficiently small.

9 We examined all feasible information regimes. The value of
information remains monotonic in the absolute value of o in other
regimes as well. For brevity, other regimes are not reported here.

information is less valuable to these agents. As expected,
when volatility is high, information is more valuable to
each trader type.

Endogenous information acquisition equilibria can be
gleaned from Table 1 as well. For example, for any
information cost between zero and 0.061 ticks, there is
an equilibrium in which all agents purchase information,
even when the asset has low volatility. Similarly, if the
asset has high volatility, and the information acquisition
cost is between 0.277 and 0.477 ticks, in equilibrium only
speculators are informed.

As may be seen from the table, multiple equilibria may
exist in the information acquisition game. For example, if
the asset has low volatility and the information acquisi-
tion cost is 0.0605, an equilibrium is for all agents to
purchase information. However, another equilibrium is for
only speculators to purchase information.

If a larger proportion of agents acquire information, the
probability an uninformed agent will trade with an
informed one is higher. However, when more agents are
informed, uninformed agents can obtain a more precise
estimate of the fundamental value from observing
market prices and transactions. The overall value of
information to an agent depends on the tradeoff between
these two effects, and, for some cost values, the informa-
tion acquisition game has the flavor of a coordination
game.

The broad insight that emerges is that in any informa-
tion regime, speculators have the greatest willingness to
pay for information. Thus, for the rest of the paper, we
suppress discussion of endogenous information acquisi-
tion, and focus on the two information regimes shown in
Table 1: either all agents acquire information or only
speculators acquire information. In conjunction with the
two volatility regimes (high and low), we thus have a total
of four regimes to focus on.
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Table 2

Proportion of time, in percent, that each trader type has a limit sell at and away from the ask price.

This table shows the percentage of time that each type of trader has a limit sell at or above the ask price. We numerically find the equilibrium for each
information and volatility regime and then simulate a further one million entries into the market (including reentries by traders who have previously
arrived at the market). These one million entries form the data on which this table is based. The average proportion of time for each trader type is found as
follows. We observe the market every 10 minutes. At each observation, each trader type is assigned a one if at least one trader of that type has an order at
the ask, and zero otherwise. We compute the average proportion of time that each trader type has limit sells above the ask in a similar fashion. The

reported average for each type is a mean across all such observations.

Volatility regime Information regime At or above ask Value of o
-8 -4 0 4 8

Low All agents informed At ask 74 28.1 59.5 0.1 0.0
Above ask 1.0 5.0 50.0 0.0 0.0

Speculators informed At ask 6.8 30.0 57.0 0.2 0.0

Above ask 2.2 9.8 53.8 0.3 0.0

High All agents informed At ask 7.2 32.8 479 0.2 0.0
Above ask 1.6 10.9 57.3 0.0 0.0

Speculators informed At ask 11.6 35.5 46.3 0.0 0.0

Above ask 3.2 15.8 65.6 0.0 0.0

For all remaining results in the paper, we find the
equilibrium under each regime, hold beliefs fixed, dis-
allow trembles, and simulate one million trader entries
(including reentries). All averages are therefore based on a
large sample. Standard errors on reported means are on
the order of the third decimal place, and are hence not
reported.

4. Trading behavior and learning

How do informed traders optimally act on their
information? Specifically do they submit market orders
or limit orders, and if so at what prices? Their behavior
determines the information content of the limit order
book. Recall that in a dynamic limit order market the best
bid and ask quotes come from previously submitted limit
orders that have not executed. If quotes are set by
informed agents, the bid and ask prices will reflect private
information. By contrast, if informed traders submit
market orders then transactions reflect current mispricing
and should be followed by price changes.

In what follows, we report the average behavior of
particular trader types. Specifically, we average across
different states that such an agent faces on entering in the
market. When we compare these behaviors across
different regimes, both the chances of particular states
differ and agents’ optimal strategies differ.

4.1. Liquidity supply

Supplying liquidity in this market requires not just
posting a limit order, but doing so at a competitive price.
Thus, to examine liquidity provision, we consider the
proportion of time that each trader type has a limit sell at
the ask price and at a price higher than the ask. That is, we
sample the limit order book at intervals of 10 units of
time. At each point of time, for each order on the book, we

determine the private value of the agent who submitted
that order. The results are reported in Table 2.1° Since our
model is symmetric, the data on limit buys at the bid price
are similar.

Observation 2. (i) Quotes are on average set by speculators,
and an even greater proportion of orders away from the
quotes come from speculators.

(ii) When there is high volatility, speculators reduce their
provision of liquidity at the quotes, and agents with an
intrinsic motive for trade increase liquidity provision. This
effect is strongest when only speculators are informed.

Speculators, the traders with no intrinsic motive for
trade, tend to supply liquidity to the market. Because such
traders are more likely to be informed, limit orders are
more likely to be submitted by informed traders. That is,
informed traders in our market tend to submit limit
orders. However, this observation is different from the
finding in the one-period experimental results of Bloom-
field, O’Hara, and Saar (2005) that informed traders
supply liquidity. In our model speculators have the
highest demand for information and the lowest desire
for trade, and therefore both acquire information and
supply liquidity. However, when they are informed (and
others are not), they somewhat decrease the amount of
liquidity they supply.

This effect is manifested in two ways in Table 2. First,
fixing the volatility regime, speculators are slightly less
likely to have orders at the ask when only they are
informed. While this effect is small, speculators are
significantly more likely to have orders away from the
quotes when only they are informed. Further, as we show
in Table 5, in the latter case, an informed trader frequently
uses market orders to take advantage of stale limit orders

10 Note that the proportions across rows in Table 2 sum to less than
100, since sometimes the book is empty on that side of the market.
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Table 3
Average ask quote (in ticks relative to the fundamental value v) when each type of trader has an order at the ask price.

This table shows the average ask quote (in ticks above the fundamental value) conditional on a given type of trader having an order at the ask price. We
numerically find the equilibrium for each information and volatility regime and then simulate a further one million entries into the market (including
reentries by traders who have previously arrived at the market). These one million entries form the data on which this table is based. The average ask
quote for each trader type is found as follows. We observe the market every 10 minutes and determine the average ask quote across all observations at
which a given type of trader has an order at the ask price. The reported average for each type is a mean across all such observations. Agents with o = 4 and
8 are omitted from the table because they submit too few limit sells for the prices to be meaningful. The last column, “Average ask price,” is an average of
the ask price across all books in which the sell side is non-empty.

Volatility regime Information regime Value of o Average ask price
-8 -4 0
Low All agents informed -0.31 0.10 0.97 0.63
Speculators informed —0.41 0.18 113 0.73
High All agents informed -0.38 0.49 2.38 1.48
Speculators informed 0.21 0.75 2.49 1.56

Table 4
Average price at which traders submit limit sells in ticks, relative to their own expectation of v.

This table shows the average price at which each type of trader submits a limit sell order. The price is shown in ticks relative to the trader’s expectation
of the fundamental value v. We numerically find the equilibrium for each information and volatility regime and then simulate a further one million
entries into the market (including reentries by traders who have previously arrived at the market). These one million entries form the data on which this
table is based. For each limit order to sell that is submitted, we find the price in ticks relative to the trader’s expectation of v. The reported average for each
trader type is a mean price across all limit orders to sell submitted by that type. Agents with « = 4 and 8 are omitted from the table because they submit

too few limit sells for the prices to be meaningful.

Volatility regime Information regime Value of o
-8 -4 0
Low All agents informed —0.45 0.01 1.46
Speculators informed —-0.47 0.26 1.66
High All agents informed —0.66 0.24 3.79
Speculators informed -0.26 0.75 3.98

and so decreases his liquidity provision. This observation
is also contrary to the observations of Kaniel and Liu
(2006) who find that if information is sufficiently long-
lived then limit orders might be preferable to informed
agents.

A trader who provides a limit order at the quotes
represents a potential marginal trader in the market. If a
newly arriving agent submits a market buy (sell) order,
the order will execute at the ask (bid) quote. Suppose all
else is equal, and consider two assets with different
fundamental volatilities. On average across time, these
assets will exhibit different distributions of marginal
traders, and hence different “representative agents.” This
effect obtains despite all agents being risk-neutral (so
wealth effects are absent), and is a result of traders
changing their order submission strategies across differ-
ent regimes. Hence, one implication of Observation 2 is
that any attempt at aggregation across traders will lead to
results that vary by market or asset.!!

™ In related work, Rindi (2008) demonstrates the ambiguous effect
of market transparency on traders’ incentives to acquire information and
supply liquidity in a Walrasian market, while Boulatov and George
(2008) consider strategic liquidity provision by informed agents.

4.2. Aggressiveness of quotes

How close are quotes to the fundamental value of the
asset? Consider the ask quotes. Since speculators have
zero intrinsic motive for trade, on average, they should
demand a price higher than the fundamental value when
they sell the asset. Conversely, agents with a private value
of —8 should be willing to sell the asset at lower prices,
sometimes even lower than the fundamental value. Thus,
comparing across volatility regimes, the shift in the
marginal trader toward lower private values as volatility
increases leads to a reduction in the average ask price,
bringing quotes closer to the fundamental value.

However, as we show in Table 3, this effect is
dominated by a change in the order submission strategy
of each type of agent. When volatility is high, speculators
submit more conservative orders. Specifically, when
speculators have orders at the ask price, the ask quote is
about 1.4 ticks higher in the high volatility regimes. While
agents with an o of —4 also submit more conservative
orders when there is high volatility, those with the most
extreme private values (¢ = —8) tend to be a little more
aggressive when all agents are informed, but significantly
more conservative when only speculators are informed.
These agents are keen to trade quickly, and the trade-
off between submitting more aggressive orders which
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execute more quickly and more conservative ones that
offer better terms of trade matters more to them than to
the types with more moderate private values.

The overall effect, as shown in Table 3, is to increase
the average ask quote in the high volatility regimes,
compared to the low volatility ones. The results on the
average bid quote are exactly similar. Thus, bid-ask
spreads are wider when volatility is high.

Observation 3. In the high volatility regimes, speculators
raise their ask quotes by more than the other trader types.

Since speculators have a zero intrinsic value to trade,
they must increase their ask prices substantially in the
high volatility regime in order to provide a cushion
against adverse movements in the fundamental value. In
contrast, traders with extreme values (say, —8) face a
genuine tradeoff: increasing the ask price does provide an
added cushion, but reducing the ask price may lead to
quicker trade, and thus also reduce adverse selection
possibilities. As Table 3 shows, the average ask is actually
lower under high volatility (compared to low volatility)
when all agents are informed and traders with o = —8
have an order at the ask.

Observation 3 is directly supported by examining the
prices at which different types of traders submit limit
orders. As Table 4 shows, in moving from low to high
volatility, speculators substantially increase the price at
which they are willing to sell the asset, by about two- and

Table 5
Percentage of market orders submitted by each trader type.

one-quarter ticks in each information regime. Agents with
middle values (¢ = —4) also raise their ask prices under high
volatility, but by much less. Agents with extreme values (o =
—8) actually lower their ask prices under high volatility
when all agents are informed, in a desire to trade quickly.

4.3. Liquidity demand, or transactions

Traders who submit market orders demand liquidity in
this market. As shown in Table 5, the demand for liquidity
shifts across trader types when the fundamental volatility
increases. In low volatility regimes, speculators submit
relatively few market orders, preferring to trade via limit
orders. They substantially increase their demand for
liquidity in high volatility regimes, especially when no
other traders are informed. Comparing the speculators
informed case across low and high volatility regimes, the
percentage of market orders submitted by speculators
more than triples, from 11.8% to 37.1%. Therefore, in
markets with high fundamental volatility, transactions are
more likely to be informative of future price movements
as speculators submit market orders.

There are two main reasons why speculators switch
from supplying to demanding liquidity when volatility
changes from low to high. First, limit orders become
riskier and are more susceptible to being picked off.
Lacking an intrinsic motive for trade, speculators are
especially susceptible to this effect. Second, especially

This table shows the proportion of market orders submitted by each trader type, as a percentage of all market orders. We numerically find the
equilibrium for each information and volatility regime and then simulate a further one million entries into the market (including reentries by traders who
have previously arrived at the market). These one million entries form the data on which this table is based. For each trader type, we find the percentage of

market orders submitted.

Volatility regime Information regime Value of o
-8 -4 0 4 8
Low All agents informed 231 20.1 13.3 20.3 23.2
Speculators informed 24.7 19.3 12.2 19.2 24.7
High All agents informed 20.2 17.7 24.4 17.7 20.0
Speculators informed 16.6 15.0 36.9 15.0 16.5

Table 6

Average of price (relative to fundamental value) in ticks, for all executed sell orders, market and limit.

This table shows the average price at which each type of trader submits a limit sell order. The price is shown in ticks relative to the fundamental value v.
We numerically find the equilibrium for each information and volatility regime and then simulate a further one million entries into the market (including
reentries by traders who have previously arrived at the market). These one million entries form the data on which this table is based. For each executed
sell order, market and limit, we find the price in ticks relative to v at the time of execution. The reported average for each trader type is a mean price across
all executed sell orders that were submitted by that type. Agents with o = 4 and 8 are omitted from the table because they submit too few sell orders for
the prices to be meaningful.

Volatility regime Information regime Value of o
_8 —4 0
Low All agents informed —0.50 -0.16 0.70
Speculators informed —0.68 -0.27 1.03
High All agents informed —0.61 -0.18 0.85

Speculators informed —0.78 —0.38 1.26
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Table 7

Mean and standard deviation of errors in beliefs of uninformed agents, in ticks.

This table shows the mean and standard deviation of errors in beliefs of uninformed agents. We numerically find the equilibrium for each information
and volatility regime and then simulate a further one million entries into the market (including reentries by traders who have previously arrived at the
market). These one million entries form the data on which this table is based. For each entry or reentry to the market by any agent, informed or
uninformed, we construct the expectation about v for an uninformed agent. The error in belief is defined as the expected value of v minus the true value of

v, in ticks.

Volatility regime

Information regime

Mean (std. dev.) of errors in beliefs

Low All agents informed 0.00 (0.61)
Speculators informed 0.00 (1.01)
High All agents informed 0.00 (0.71)
Speculators informed —0.01 (1.69)

when no other traders are informed, speculators are more
likely to find mispriced orders in the limit order book
when volatility is high, making market orders more
profitable.

Observation 4. Speculators substantially increase their
demand for liquidity when the fundamental value has high
volatility. The effect is heightened when no other trader types
are informed.

4.4. Benefiting from trade

Traders choose their order type and the prices at which
they trade in order to get the best possible terms of trade
from other market participants. The best way to extract
surplus depends both on asset characteristics and on
others’ optimal response to changes in asset character-
istics. When there is high volatility, agents with a high
absolute private value have a desire to trade quickly, even
though they obtain worse prices at execution.

Observation 5. An increase in volatility leads to speculators
obtaining better terms of trade, whereas agents with a high
intrinsic benefit to trade obtain worse terms of trade.

In Table 6, we report the difference between transaction
price and fundamental value for all executed sell orders
(i.e., market and limit). An increase in this difference
across information regimes signifies an improvement in
the terms of trade for a given trader type.

Two comparisons are useful from the table. First,
comparing across information regimes (i.e., comparing the
first and second rows of numbers or the third and fourth
rows), speculators experience an improvement in the
terms of trade when only they are informed. When the
volatility is low, sell orders of speculators execute 1.03
ticks above the fundamental value when only they are
informed, as compared to 0.70 ticks above the funda-
mental value when all agents are informed.'? The effects
of adverse selection are exhibited by the increased cost (in
terms of amount paid in excess of the fundamental value)
paid by agents with nonzero private values (o« = —8 or —4)
in the case in which only the speculators are informed.

12 The notion that limit order submitters execute at favorable prices
is consistent with the empirical work of Biais, Bisiere, and Spatt (2003),
who fail to reject the hypothesis that competing limit order submitters
on Island (an electronic limit order book) make positive profits.

Second, comparing across volatility regimes, specula-
tors see a substantial improvement in their terms of trade
when the fundamental volatility is high and they have
superior information. For example, comparing the second
row with the fourth row, speculators improve their terms
of trade by 0.23 ticks per share when the volatility is high.
Conversely, both asymmetric information and volatility
lead to worse terms of trade for agents with nonzero
private values (i.e., oo = —8,—4).

4.5. Learning by uninformed traders

We next consider the beliefs of uninformed traders
over the fundamental value of the asset. In regimes in
which uninformed traders exist, these beliefs are essential
to determining their expected payoffs from different
actions. When all agents in the market are informed, we
construct the expectation over fundamental value of a
hypothetical uninformed agent (see footnote 20 in the
Appendix for further details). With a slight abuse of
terminology, we thus refer to the beliefs of an uninformed
trader even when all traders are informed about the
fundamental value.

Recall that an uninformed trader in the market at time
t observes a lagged fundamental value v;_,. He uses
market observables (including the limit order book and
information about the most recent transaction) to update
his beliefs about the fundamental value.

In Table 7, we show the mean and standard deviation of
the errors in beliefs of an uninformed trader, across the
four regimes considered. The belief error is defined as the
expected value of v, for an uninformed agent, given
market conditions at time t, minus the current value of v;.
As expected, the mean error is close to zero, and the
standard deviation increases when there is high volatility
and when only speculators are informed.

We next consider a simple linear OLS specification for
belief formation in each of the two volatility regimes in
which only speculators are informed, using data from the
simulations. Since successive observations from the
market will exhibit serial dependence, we consider
observations that are separated from each other by 100
trader entries (including reentries).

The dependent variable in the regressions is the extent
to which an uninformed agent uses market observables to
revise her belief about the value of v,. That is, the
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Table 8

Regression of belief updates by uniformed traders when only speculators are informed.

This table reports coefficient estimates and t-statistics from an OLS regression of the expected value of v, for an uninformed trader in the market at time
t, relative to the last value observed by the trader, v;_,,, on various price and depth variables. The dependent variable is measured in ticks. Each price
variable on the right-hand side is the relevant price minus the last observed value, v;_,,, also in ticks. Each depth variable is measured in shares. We
numerically find the equilibrium for each information and volatility regime and then simulate a further one million entries into the market (including
reentries by traders who have previously arrived at the market). For this table, we include every one hundredth entry or reentry in that sample of one
million, keeping only those observations for which the book contains at least one limit order on each of the buy side and the sell side. The regimes

considered are the ones in which only speculators are informed.

Independent variable

Volatility regime

Low High

Coeff. t-stat. Coeff. t-stat.
Constant 0.036 (2.46) 0.031 (1.32)
Ask price 0.333 (50.33) 0.261 (78.29)
Bid price 0.393 (57.87) 0.256 (78.05)
Last transaction price 0.081 (16.05) 0.365 (90.57)
Last transaction sign —0.015 (-3.26) 0.106 (20.39)
Depth at ask —0.068 (-19.95) -0.130 (-9.70)
Depth at bid 0.070 (20.17) 0.096 (7.22)
Depth above ask 0.037 (11.82) 0.062 (20.83)
Depth below bid —0.037 (-12.43) —0.060 (-20.76)
No. of observations 8,420 8,721
R? 0.880 0.961

dependent variable is E[v|s{] — v;_,,, where s; denotes the
state observed by the agent in the market at time t. The
dependent variable in each volatility regime has a mean
that is not significantly different from zero.

The right-hand side variables include ask and bid
quotes, the last transaction price, the sign of the last
transaction (i.e., +1 if the transaction resulted from a
market buy, and —1 if it resulted from a market sell), and
the depths on either side at and away from the quotes. For
all price variables, we use the price minus the last
observed value of v. We restrict attention in each regime
to books that are non-empty on both sides of the market.
The results of the regressions are shown in Table 8.

As shown in the table, a linear approximation appears
to be a good fit for the belief formation process of
uninformed traders. If the ask and bid quotes each
increase by a tick (or, conversely, the mid-point of the
ask and bid quotes increases by a tick), the expected value
of v, increases by about 0.5-0.7 ticks, depending on the
regime. Further,

Observation 6. (i) Uninformed traders’ beliefs place sub-
stantially greater weight on the last transaction price when
there is high volatility.

(ii) Knowing that the previous transaction was a market
buy has a greater positive impact on the expected funda-
mental value under high volatility.

(iii) Depth at the ask reduces expectations about v, and
depth away from the ask increases expectations about v,
with depth at and away from the bid having a symmetric

effect.

The intuition for (i) and (ii) in Table 8 is that informed
traders (i.e., speculators) increase their proportion of
market orders under high volatility. That is, they increase

their demand for liquidity, and somewhat reduce their
supply. Hence, the price at which the previous transaction
took place is substantially more informative (both
economically and in terms of statistical significance)
about the current value of v when the asset has high
volatility. Further, uninformed traders typically submit
market buys at a price higher than the fundamental value,
whereas informed traders invariably submit market buys
at prices lower than the fundamental value. On average,
therefore, the price of a market buy is above the
fundamental value when there is low volatility, and below
the fundamental value when there is high volatility. This
is reflected in uninformed traders’ beliefs.!?

Limit order depth is also informative about the current
value. Notice that depth at and away from the quotes has
opposite effects: increased depth at the ask suggests the
current value is lower than expected, whereas increased
depth away from the ask suggests that the current value is
higher than expected. Recall that traders who submit limit
orders are able to revisit the market and resubmit orders,
and on average reenter the market twice as often as the
fundamental value changes. Thus, there are few stale
orders on the book. Orders submitted away from the ask
suggest the current ask is too low, and hence lead to an
upward revision in beliefs about v. On average, both
transaction prices and traders’ beliefs are “correct” (that
is, average out to the true value). Thus, selling pressure
(depth at the ask) tends to lead to lower prices, whereas

13 The negative sign on the last transaction sign under low volatility
in Table 8 is counter-intuitive, and is not robust to model specification.
We also performed a two-stage procedure in which the last transaction
price is first regressed on the last transaction sign, with the residual
being used as the independent variable in the belief revision regression.
This results in a positive coefficient on the last transaction sign under
low volatility as well.
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Table 9
Volatility of microstructure noise under different regimes.

This table shows the standard deviation of the microstructure noise, p, — ¥, where ¥ is the expectation of an uninformed trader about the fundamental
value, given market observables and the lagged fundamental value v;_,,. We numerically find the equilibrium for each information and volatility regime
and then simulate a further one million entries into the market (including reentries by traders who have previously arrived at the market). These one
million entries form the data on which this table is based. For each transaction in the market, we construct the expectation of v; for an uninformed agent.
The estimated microstructure noise associated with that transaction is the transaction price minus this expectation 7, measured in ticks. The true
microstructure noise is the transaction price minus the fundamental value v, also measured in ticks. The table reports the standard deviation of the
microstructure noise across different volatility and information regimes.

Volatility regime Information regime

Standard deviation

True noise Estimated noise
(pr —Vt) (Pt - '7[)
Low All agents informed 0.79 0.68
Speculators informed 1.25 0.79
High All agents informed 1.02 0.88
Speculators informed 1.68 0.90

dispersion on the sell side (depth away from the ask)
tends to lead to higher prices.

5. Microstructure noise and implications

The price at which a transaction occurs in the market is
frequently decomposed as

Py =Vt + Ny,

where p, is the price at time t, ¥, is the expected
fundamental value given what the econometrician ob-
serves (also called the “efficient price”), and n; is the
deviation from the fundamental value or the “micro-
structure noise.”' In a frictionless market with all agents
informed, if the econometrician can perfectly estimate the
fundamental value, all trades should execute at the true
fundamental value, v;, and the microstructure noise
should be identically zero. We show in this section that
the properties of the microstructure noise vary with both
the volatility of the fundamental value and the informa-
tion regime in the market.

In estimating the microstructure noise, to be fair to the
spirit of the analysis, we use the actual transaction price
and the expected value of v given market observables and
the lagged fundamental value. As noted earlier, this
expected value is kept track of even when all agents are
informed, thus allowing us to conduct the analysis in the
role of uninformed market observers.

5.1. Volatility of microstructure noise

If the fundamental value were perfectly observable,
and all trades occurred at the fundamental value, the
microstructure noise would be identically zero. Thus, the
standard deviation of the microstructure noise is a
measure of the trading frictions present in the market in
equilibrium.

4 Hasbrouck (2002) provides a comprehensive discussion of the
decomposition of transaction price into efficient price and microstruc-
ture noise.

The third column of Table 9 shows that, indeed, the
volatility of the true microstructure noise (i.e., price minus
true fundamental value) does increase with both funda-
mental volatility and with asymmetric information.
However, as the last column of Table 9 shows, asymmetric
information has a negligible to small effect on estimated
volatility of the microstructure noise. As expected, excess
volatility is somewhat higher when the volatility in the
fundamental value is high, compared to when it is low.

Observation 7. The market acts as a volatility multiplier:
The volatility of the true microstructure noise increases when
the volatility of the fundamental value is higher, and when
only speculators are informed. However, the effects of
asymmetric information and fundamental volatility on the
volatility of the estimated microstructure noise are weaker.

The intuition for the first part of Observation 7 partly
follows from Observation 2. Under high volatility, spec-
ulators provide less liquidity, so quotes are more often set
by agents with a large private value. These agents are
willing to trade at different prices (specifically, prices
closer to the fundamental value) than those provided by
speculators, thus increasing the overall noise in the
quotes. Since every transaction price is a quote before
the transaction is consummated by an incoming market
order, this translates into noisier transaction prices under
high volatility. Similarly, with adverse selection, quotes
are typically set further away from the fundamental value,
leading to excess volatility in transaction prices.

The explanation for the latter part of Observation 7 lies
in the fact that estimates of the fundamental value are
themselves more noisy when only speculators are in-
formed, as shown in Table 7. The true microstructure noise
(that is, the difference between price and true funda-
mental value of the asset) is indeed more volatile when
only speculators are informed. However, in some sense,
that volatility is soaked up in noisy estimates of funda-
mental value, and the estimated volatility of the micro-
structure noise shows little variation across information
regime. Indeed, while the estimated noise is more volatile
when fundamental volatility is high, the effect there is
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also dampened due to the estimate of fundamental value
being more noisy.

In using the volatility of prices to proxy for the
volatility of the fundamental value, the proportion of
informed traders in the market must be taken into
account. A low volatility asset with few informed traders
and a high volatility asset with a larger proportion of
informed traders may have similar price volatilities.
Controlling for the proportion of informed traders, assets
with high true volatility will have high price volatility as
well, so sorting assets by price volatility will effectively
sort them by true volatility. However, the relationship
between the two need not be linear, so using price
volatility directly in a regression may yield misleading
results.

5.2. Correlations in changes in microstructure noise and
fundamental value

In many econometric studies, the microstructure noise
ne is assumed to be white noise. In our simulated data, v;
is an exogenous random walk, so its first difference is
stationary. Let A(x;) =X —X;_1. Table 10 exhibits the
correlations between A(n;) and A(¥;) at the transaction-
by-transaction level. The correlations are negative across
all regimes, and are slightly higher in magnitude (i.e.,
further away from zero) when the asset has high volatility,
and when there is asymmetric information across traders.

Hansen and Lunde (2006) empirically find a negative
correlation between the fundamental value and the level
of microstructure noise in 2004 for most of the stocks in
the Dow Jones Index. The Dow Jones stocks are, of course,
not traded on a pure limit order market. Nevertheless, the
NYSE and Nasdaq have both incorporated the notion of a
limit order book as part of their market design. Some of
the intuition of our model may therefore be expected to
carry over. As they point out, if changes in the transaction
price lag changes in the fundamental value, it is
immediate that there will be a negative correlation
between changes in the fundamental value v; and levels
of the microstructure noise n;. Suppose the fundamental
value increases by one tick. There will typically be a lag
before the price adjusts to the new level. In the interim,

Table 10
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the microstructure noise must mechanically decrease,
inducing a negative correlation between changes in the
true fundamental value v, and levels of n;. However, this
need not translate to a negative correlation between
changes in the estimated fundamental value 7, and the
resultant microstructure noise. The latter relies on the
learning in the market being rapid enough for changes
in v to flow through relatively quickly.

A similar inertia in prices leads to positive autocorrela-
tion in the microstructure noise—prices take some time to
adjust to changes in the fundamental value. Thus, if the
microstructure noise becomes negative after (say) an
increase in the fundamental value, it stays negative for a
few transactions. Ait-Sahalia, Mykland, and Zhang (2006)
consider serial dependence in the microstructure noise
under the assumption of independence between micro-
structure noise and fundamental value. For stocks such as
Microsoft and Intel, they show that, assuming this
independence, trade reversals imply a negative autocor-
relation in the microstructure noise (as mentioned earlier,
it should be observed that these stocks do not trade in a
pure limit order market). However, controlling for trade
reversals, the remaining autocorrelation is positive,
perhaps due to a gradual adjustment in prices following
a change in fundamental value.

As also reported in Table 10, in our model, the
autocorrelation in the microstructure noise is significantly
affected by asymmetric information. When fewer traders
are informed, prices adjust more slowly to changes in the
fundamental value. Under symmetric information (i.e.,
with all agents informed), the autocorrelation is weaker
under high volatility, whereas it is approximately the
same across volatility regimes when speculators have
superior information.

We also consider the correlations between changes in
the microstructure noise and changes in the fundamental
value. As shown in Table 10, changes in 7; and changes in
n; are negatively correlated. This correlation potentially
leads to a misestimation of f’s for the asset in question
(see Section 5.3).

Observation 8. Changes in the microstructure noise are
negatively correlated with changes in the fundamental value.

Correlations between changes in fundamental value and microstructure noise, transaction-by-transaction.

This table shows the correlations between the microstructure noise and changes in the fundamental value across different volatility and information
regimes. We numerically find the equilibrium for each information and volatility regime and then simulate a further one million entries into the market
(including reentries by traders who have previously arrived at the market). These one million entries form the data on which this table is based. For each
transaction in the market, we construct the expectation of v, for an uninformed agent, #;. The microstructure noise n, associated with that transaction is
the transaction price minus this expectation, measured in ticks. The table reports the correlation between changes in the fundamental value across
transactions, 4(?;), and the microstructure noise, n¢, as well as changes in the microstructure noise across transactions, 4(fi;). The autocorrelation of the
microstructure noise is also reported. The p-values for the reported correlation coefficients are less than 0.001 in each case.

Volatility regime Information regime

Correlation between Autocorrelation of n;

A(D¢) and n;

A(D) and A(ng)

Low All agents informed —0.05 -0.33 0.25
Speculators informed 0.04 -0.17 0.34
High All agents informed —0.21 -043 0.04
Speculators informed —0.04 —0.43 0.13
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The correlation is mildly stronger when the asset has high
volatility and when there is asymmetric information across
market participants.

The second statement in Observation 8 represents a
new testable implication. The intuition behind the
observation is as follows. Suppose there has been no
change in the fundamental value v over some period of
time. We expect transaction prices to be close to v in such
a situation, so that the microstructure noise n is close to
zero. Now, suppose v increases by one tick. A negative
correlation between the change in v and the change in
n implies that n is now negative. In other words, bid and
ask quotes adjust slowly to changes in the fundamental
value n (recall that every transaction price is a bid or ask
price before a transaction is consummated). The magni-
tude of the correlation between A(v) and 4(n) captures the
degree of the inertia in transaction price.

When all agents are informed, quotes adjust more
quickly to changes in the fundamental value. Therefore,
the correlation between A(v) and 4(n) is stronger when
only speculators are informed. Comparing high volatility
regimes to low volatility ones, changes in v are as frequent
under both regimes, but of a higher magnitude when
volatility is high. Thus, following a change in v, existing
orders on the book are mispriced to a greater degree, and
are more likely to be picked off by incoming traders.
Finally, when there is high volatility and only speculators
are informed, the correlation is further strengthened by
the shift in liquidity provision at the margin, from
informed speculators to uninformed large private value
traders.

5.3. Quantifying the cross-sectional asset
pricing implications

We next consider the impact of the correlation
between microstructure noise and fundamental value on
asset prices. Let i denote a specific asset, and let
A(Vy) = A(vy) + eje. Since the market’s beliefs about the
fundamental value are on average correct, e; has mean
zero. Next, suppose that the relationship between changes
in the microstructure noise 4(n;;) and the true value of the
asset A(v;,) is linear so that we can write

A(ny) = y;4(Vie) + Ui,

where the residual u; is uncorrelated with v;. Note that
A(ny) and A(v;) both have a mean of zero, and y; <0 due to
the negative correlation between changes in the micro-
structure noise and the fundamental volatility.

Define the “true” return process for firm i as
i = (Vi — Vi_1)/Vie = A(Vie)/Vir, whereas the observed
return process is

ADir) _ AWi) + A(ny)
Dit Die + Ny

Vi Uit + €j¢
(1 +pr—"—+ .
R e e

Tig =

Most of the transaction prices in our simulated data are
within a few ticks of the fundamental value. That is, n;; is a
few ticks for most transactions. Hence, for many stocks, it

follows that v /(D +ny)~ 1, so that we can write
rie = (1 + 9k + (Ui + ei)/Die + Nye).

Now, suppose the Capital Asset Pricing Model (CAPM)
holds, so that the true return process satisfies

iy =15 + Bi(Tme — 19) + &t

where 1y is the risk-free rate, ry;, the return on the market,
and ¢&; a mean-zero i.i.d. shock. The true f is defined by
Bi =c0\((r;;,rm[)/a$nt. The f estimated from transaction
data is B = cov(rit, Tmr) /02 ~ (1 + 17)B.

Thus, correlation between changes in the microstruc-
ture noise and fundamental value can lead to a mis-
estimation of 5. To obtain a quantitative measure of the
magnitude of possible misestimation, we regress A(n;) on
A(D¢) in each of the four cases in our simulation. Note that
this introduces another element of noise in the estima-
tion: the fundamental value must be estimated as well.

In this regression, we use transaction-level data.!® The
results are reported in Table 11. The y coefficients are
negative in each case, are lower under asymmetric
information (holding volatility fixed), and slightly higher
under high volatility (holding information regime fixed).
Since the coefficients are negative, the estimated beta
coefficients will be too low, suggesting that the estimated
risk premium may be too high.

A further implication is that if the estimated beta
coefficients are too low to explain asset returns, other
“factors” related to market outcomes, such as liquidity or
idiosyncratic risk (which is related to the fundamental
volatility of the asset), may appear significant in an asset
pricing regression, even if the true model is the CAPM.
Further, other microstructure variables that are correlated
with microstructure noise, such as bid-ask spreads or
other measures of transaction cost, should also be
informative about observed returns. The intuition, of
course, extends to multi-factor models as well.

Bessembinder and Kalcheva (2008) consider the effects
of “bid-ask bounce,” also a symptom of microstructure
frictions, on asset pricing tests, and find that not only are
f’s and returns misestimated, but incorrect inferences
may also be plausibly obtained in asset pricing tests.
Further, they find that illiquidity can appear to be priced
even though it is not in the true model. Interestingly,
Bessembinder and Kalcheva (2008) find a bias in the
opposite direction to ours, in a model in which the
microstructure noise is independent and identically
distributed over time. Our work therefore emphasizes
the importance of controlling for the properties of the
microstructure noise.

A related notion is that the degree of misestimation
will vary based on the properties of the asset at hand. For
example, small stocks tend to be more volatile in prices,
and may be expected to have high fundamental volatility
as well. Although agents have a greater incentive to
acquire information about such stocks, the cost of
acquiring this information is also greater, compared to a

15 Bandi and Russell (2005) show that using high-frequency data to
estimate asset betas results in inconsistent estimates, whereas using
low-frequency data leads to imprecise ones, resulting in a tradeoff.
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Table 11
Regression of change in microstructure noise on change in estimated fundamental value.

This table reports coefficient estimates and standard errors from an OLS regression of the change in the microstructure noise, 4(n;), on the change in the
expectation of fundamental value, A(?;), for different volatility and information regimes. We numerically find the equilibrium for each information and
volatility regime and then simulate a further one million entries into the market (including reentries by traders who have previously arrived at the
market). These one million entries form the data on which this table is based. For each transaction in the market, we construct the expectation of v, for an
uninformed agent, 7. The microstructure noise n; associated with that transaction is the transaction price minus this expectation, measured in ticks. The
change in each of n; and ¥, is the value at a given transaction minus the value at the previous transaction. The change in n; is then regressed on a constant
and the change in 7, and the slope coefficient y from this regression is reported, with the standard error in parentheses. For each volatility and

information regime, the last two columns contain the number of observations and the R? of the regression.

Volatility regime Information regime Coefficient (std. error) No. of obs. R?
Low All agents informed —0.55 (0.003) 200,242 0.11
Speculators informed —0.26 (0.003) 207,143 0.03

High All agents informed —0.51 (0.002) 213,594 0.18
Speculators informed —0.40 (0.002) 202,098 0.19

large, liquid stock. Therefore, asymmetric information is
likely to be a more important friction for a small stock. To
the extent that variables such as those related to liquidity
or idiosyncratic risk capture the effects of a misestimation
of factor betas, these variables will then appear to explain
returns in a cross-section of assets as well.

6. Conclusion

We model agent behavior in a dynamic limit order
market, allowing for the possibility of adverse selection in
the form of asymmetric information across agents about
the fundamental value of an asset. Agents with no
intrinsic motive for trade (or speculators) have a greater
incentive to acquire information about the asset. In
addition, the sequential arrival of traders is itself a friction
in a dynamic market, since newly arrived traders may
have more recent information.

We show that agents’ trading strategies change with
the properties of the fundamental value and in the
presence of adverse selection. On average, speculators
set the bid and ask quotes when the fundamental value
has low volatility. However, when fundamental volatility
is high, speculators reduce their provision of liquidity, so
that quotes are more often set by agents with high private
values. As a result, there is an increase in the volatility of
the microstructure noise. Agents with high private values
are more willing to provide liquidity when the proportion
of informed agents in the market is low. Thus, markets in
which only speculators are informed exhibit even greater
volatility in the transaction price.

Transaction prices may take some time to adjust to
changes in the fundamental value. Further, their response
depends on agents’ trading strategies, which in turn
depend on properties of the fundamental value and on
the information regime. Changes in the microstructure
noise are negatively correlated with changes in the
estimated fundamental value of the asset. Therefore, any
econometric specification that assumes such noise is
uncorrelated with fundamental volatility misestimates
factor exposure. This leaves open the possibility that other
variables that are correlated with microstructure noise

(such as many transaction costs or liquidity measures)
could be priced.

The microstructure noise itself exhibits positive serial
correlation. Thus, an accurate decomposition of transac-
tion price into estimated fundamental value and micro-
structure noise must take account of these properties of
the microstructure noise.

Finally, if all assets are traded in limit order markets,
microstructure noise may be an undiversifiable risk, and
therefore priced in equilibrium. For example, Bandi,
Moise, and Russell (2006) consider a three-factor model
which includes the market, innovations in market volati-
lity, and innovations in microstructure volatility on the
market portfolio (proxied by the S&P 500 “spider”
contracts), and show that innovations in microstructure
volatility are priced in the cross-section.

Since our work suggests that microstructure noise
varies across assets and is correlated (in changes) with the
fundamental value, it is potentially important in a
characteristics framework as well. For example, Daniel
and Titman (1997) suggest that factor pricing models may
be picking up differences in fundamental characteristics
across (say) industries. Since the volatility of the funda-
mental value is likely to be closely related to other
fundamental characteristics, one may expect microstruc-
ture noise to be priced as well.

Appendix A
A.1. Model description: trading game

Recall that the trading game assumes that traders’
information acquisition decisions are fixed. Let I € {0, 1}
denote the action an agent takes with respect to
information acquisition, where I = 1 if the agent chooses
to become informed. As mentioned in Section 2, the type
of a trader is given by 0 = (p, ®), where p is a discount rate
and o a private value for the asset. Let ® denote the set of
feasible agent types, and @' the set of feasible (6, 1) pairs.

Now, when he is in the market at time t, a trader takes
an action a = (p, q,x), where p denotes the price at which
he submits an order, =0 the priority of his order among
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all orders at price p, and

1 if a buy order is submitted,
x =< —1 if a sell order is submitted, (2)
0 if no order is submitted.

Recall that L denotes the limit order book. For a newly
submitted order, L, p, and x determine gq. However, g
evolves over time for an order on the books, and may
change before the trader reenters the market. It is used in
determining the continuation payoff on reentry. If x = 0,
the values of p and q are irrelevant to expected payoff.

If there is an existing order at price p on the other side
of the market, a submitted order executes instantaneously
and is called a market order. A buy order at a price p>A(L)
automatically executes at the ask price A(L), and similarly
with a sell order at p<B(L), where B(L) is the bid price. For
such an order, we set g = 0. Alternatively, if there is no
order on the other side of the market at that price, the
order joins the existing orders on the same side at that
price.

With a slight abuse of notation, let ¢’ denote the
outstanding limit orders at price p before the agent
submits an order. Then, for a new order, priority g(p, x) is
determined as follows:

0 if (i)x=0or
(i) x=1, p=A() or
(iii) x = -1, p<B(L),
|6P + x| otherwise.

q(p.x) = (3)

Consider the problem faced by a trader in the market at
time t. Suppose this trader is reentering the market (the
problem faced by a new trader is identical to the problem
faced by a reentering trader who did not submit an order
on his previous entry), and, on his previous entry (at some
t'<t), he had submitted an order at price p that is still
active. This order may have improved in priority at price p
between times t' and t. The trader has the option of
leaving the order unchanged and taking no further action.
The trader’s optimal action depends on the state he
observes.

Let s(0,1) be the state observed on a particular entry to
the market at time t by a trader with type 0 who has taken
the information acquisition action I. Here, s(-) includes:

(i) the history of play in the game, and the history of
changes in v up to time t — 4, (if I = O; i.e., the agent is
uninformed) or time t (if I=1; i.e., the agent is
informed). If the trader had previously entered the
market and taken an action, s(-) includes the status of
the previous action, a = (p, g, x), where p is the price at
which the previous order was submitted, q its current
priority at price p, and x, which is defined in Eq. (2) of
the text to take on the value +1 for a buy order, —1 for
a sell order, and zero if no action was taken. If the
trader is entering the market for the first time, x is set
to zero;

(ii) a variable z € {0, 1} that denotes the number of shares
the agent has available to trade. Each trader enters
with z = 1. Once he has traded, z is set to zero. As we
comment after the Bellman equation in Eq. (6), this

variable is used to conveniently set an agent’s future
payoff to zero once he has traded.

Let .o/(s) denote the feasible action set of a trader in
state s. For computational tractability, we restrict limit
order submission to a finite set of prices within k ticks of
an agent’s expectation of the fundamental value. We
choose k to be sufficiently large that it does not affect the
equilibrium. Denote the agent’s expectation of funda-
mental value as ¥(s) = E(v|s), where s denotes the state
observed by the agent. The feasible action set is then
defined as

2(s) ={(p,q,x)| (i) x € {—1,0,1}, (ii) g = 4(p, %),
(iii) g £0==p € [I(s) — k, D(s) + k] N 2}.(4)

Let Sy, denote the set of feasible states a trader with
type 0 and information I may encounter. A mixed strategy
for such a trader in the trading game is then a map
oo - Son — Hsesw.“ﬁ({%(s)), where A(.cZ(s)) is the set of
probability distributions over .oZ(s).

Consider the value to trader type 0, who takes
information acquisition action I, of being in the state s,
given that his previous order is a. Each action a in the
finite action set .</(s) gives rise to an expected payoff that
consists of two components: first, a payoff conditional on
the order executing before the trader reenters the market,
and second, the value associated with reentering the
market (without having executed in the interim) in some
new state s.

The likelihood of a limit order executing clearly
depends on the strategies of other players in the game.
Since we consider only symmetric equilibria, consider a
trader in the market, and let ¢ = {o(y )}/, denote the
strategy adopted by every other player. For convenience,
normalize the trader’s entry time to zero. Let ¢(z, v;s,a, o)
be the probability that an action @ = (p, 4, X) taken in state
s at time zero leads to execution at time 7>0 when the
fundamental value is v, given that all other agents are
playing o, and let f(v|s, t) denote the density function over
v at time 7, given state s. For an uninformed trader, f(-)
incorporates the trader’s beliefs over vy.

Suppose the trader reenters the market at some time
w>0. His expected payoff due to execution prior to
reentry is

ns.awo) = [ [ v pioe)
xf(vls, t)dv dt. (5)

This equation is derived as follows. Suppose the agent’s
order executes at a time t € [0, w]. The payoff to the order
depends on the fundamental value at time t, which we
denote v;. As noted, the instantaneous payoff of this order
at time t is X(ox+ v —p). This payoff must then be
discounted back to time zero, at the rate p. The innermost
integral of the first term is over the different fundamental
values that can obtain at time t. We expect ¢(-) to be
higher when v has moved in an adverse direction (for
example, v has decreased after a limit buy was sub-
mitted)—this is another manifestation of adverse selec-
tion in this model. For a market order, we have ¢(0,-) =1,
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since the order executes immediately. The outermost
integral is over the possible times at which execution
could occur.

Recall that the reentry time is random and exogenous.
Let G(-) denote the probability distribution of the reentry
time. Let v(s'|s,a,w,o) denote the probability that the
trader observes state s’ on reentry, given action a, previous
state s, elapsed time w since entry into the market, and
strategy of other players o. Finally, let J(s) denote the value
to an agent of being in state s. The Bellman equation for
the agent’s problem is

J(s,0) = max /oo {n(s, a,w,o)+e PV . Js',0)
0

acA(s) s'eSy

xV(s'|s,d,w, o) ds/} dG(w). (6)

The first term on the right-hand side (defined in (5))
indicates the payoff from execution before reentry at the
random time w. The second term captures the continua-
tion payoff to the trader on reentry to the market at
time w. If his order executes before he reenters, we have
Z =0 (i.e, he cannot trade any more shares). Define
J(s’,6) =0 for all s’ such that z =0, to ensure that the
continuation payoff is set to zero if an order executes
before the trader reenters the market.

The agent reenters the market at the random time w in
some state s’ different from s. If his previous order is still
unexecuted, he can choose instead to submit a new order
at a price p#p, and possibly in a direction X#x. A new
order implies cancellation of the previous order. Alter-
natively, he can choose to leave his previous order on the
books by setting p=p and X% =x. Of course, market
conditions may have changed since he first submitted
the order, either due to exogenous reasons (e.g., a change
in the fundamental value) or due to actions taken by other
agents. The latter could enhance the priority of this
agent’s order at the price p, or it could reduce the overall
priority if other agents submitted limit orders at prices
more aggressive than p. Hence, the action a taken at
time zero evolves to a’ by the time the trader reenters at
time w. The outermost integral is over the random reentry
time.

Since the action set is finite on any entry, the
maximum over all feasible actions exists and is well-
defined. The value of a state and previous action pair is
just the maximal expected payoff over all feasible actions
the trader can take.

Fixing the strategies of all other agents, a given pure
strategy yg,, for a trader with type (0,1) ©' is a best
response if (and only if), for every s € Sy,

Js',0)

s'eSy

[ee]
Yo € arg max/ {n(s, a,w,o)+e P
’ acA(s) —0

xV(s'|s, @, W, G) ds/} dG(w). (7)

Note that some of these states may not be attained in
equilibrium. Nevertheless, we require the trader to act
optimally in these states as well. Also, the trader’s optimal
action in any state must take into account the possibility

of future reentry (and that the trader will play optimally
in the new state).

Finally, a strategy for each player is defined as
V= Woilpeo- A strategy y* = {yj,}s.o Trepresents a
Markov perfect Bayesian equilibrium of the trading game
if, for each pair (4,1) € @/, Yy, is @ best response in every
feasible state s € S, given that all other agents are using
the strategy y*.

A.2. Details of the numerical algorithm

We fix information acquisition strategies, and solve for
the equilibrium of the corresponding trading game. We
use an asynchronous value function iteration procedure,
similar to Pakes and McGuire (2001), to find a J(s, o) that
satisfies the Bellman equation in Eq. (6). In principle, we
would like agents to condition their strategies on the
entire history of the game. In practice, of course, this is
computationally infeasible. We therefore use the proper-
ties of the model to simplify the state space in the
simulations.

Since the fundamental value evolves as a random walk,
the set of prices at which trade can feasibly occur is, in
principle, unbounded (although it is finite in any finite
simulation). However, given the payoff on execution in Eq.
(1) of the text, a trader cares only about the relative price
at which trade occurs (i.e., the price relative to the
fundamental value).

Historical prices and lagged values of v can also be
expressed in terms of the current fundamental value for
an informed trader. In the same manner, historical
transaction prices and current books can be expressed
relative to the last observed fundamental value for an
uninformed trader. This significantly reduces the size of
the state space, to the point that the set of recurrent states
in our simulations is finite (although still very large).'®

For the numerical implementation of the model, we
restrict the state space for each agent as follows. Let m(I)
denote the market conditions observed by an agent at
time ¢ (recall that informed agents, with I = 1, observe the
current fundamental value; uninformed agents, with
I = 0, observe it with a lag). We use

me(0) = {L¢, Ve P> behs
me(1) = me(0) U {v¢},

where L; is a set of variables that depend on the book at
time t (L), p; is the price of the most recent transaction,
and b; is a variable indicating whether the most recent
transaction was a buy (b, = 1) or sell (b, = —1).1”

16 A recurrent class is a subset of states with the following
properties: (i) regardless of the initial state, the system eventually
enters the recurrent class; (ii) once entered, the probability of each state
outside the recurrent class is zero; and (iii) each state in the recurrent
class is visited infinitely often as t approaches infinity.

17 We investigated a model in which agents also observe the
cumulative market buys and sells in the interval [t — 4;,t]. The added
conditioning variables are virtually ignored by traders in updating beliefs
about v, and do not affect market outcomes. In our model, only recent
history is relevant to traders, for two reasons. First, traders leave the
market forever after execution. Therefore, any knowledge about traders
who have already executed does not affect agents’ beliefs about future
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Ideally, we would like agents to condition on the entire
book; in practice, this becomes computationally intract-
able. Instead, the variables in L, consist of: (i) the current
bid and ask prices, (B:,A¢); (ii) the total depths at these
prices, (¢8, £%); and (iii) the cumulative buy and sell depths
in the book, D’ = SN {££>0} and Dj = >N (¢t <0}.

Given the market observables used, in the numerical
algorithm, the state at time t for an agent of type 6 who
makes the information acquisition decision I is defined by
s = {0, m¢(]),a,z}, where a = (p,q,x) denotes the status of
his previous order, and z € {0, 1} denotes how many shares
he can trade (z is set to zero once he has traded).

In the algorithm, at each time t, each action a in each
state s encountered by the simulation has an associated
payoff U(als). This payoff is a real number, and is the
expected discounted payoff from taking action a in state s.
Hence, it may be interpreted as the current belief of an
agent about the payoff from this action.'®

At any point of time, current beliefs U,(-) imply
an optimal strategy profile y,, which assigns the
payoff-maximizing action in each state. Let a*(s) e
argmaxg. .Ue(dls) denote the optimal action in state s.
Then, given beliefs U.(-), the value of state s is determined
as J(s,y,) = Un(@)ls).

Each action and state pair (@,s) has an initial belief
Up(als). These initial beliefs are set as follows. Consider a
limit buy order at price p when the last observed
fundamental value is v. The initial belief for such an order
is the payoff o + v — p discounted by the expected time
until the arrival of a new trader for whom being a
counterparty yields a non-negative payoff. This initial
value is optimistic since (i) limit orders tend to execute
when the fundamental value moves in an adverse
direction, and (ii) counterparties usually hold out for a
strictly positive payoff. The initial belief for market orders
also assumes the fundamental value is unchanged from its
last observed value, but of course involves no discounting.
Given that we allow traders to tremble, any Up(-) can
eventually lead to an equilibrium. The choice of initial
beliefs is driven more by computational considerations (in
particular, converging to equilibrium more quickly) than
by a theoretical need.

Additional details of the algorithm are as follows.

1. Three types of exogenous events drive the simula-
tion—changes in the fundamental value, the arrival of
new traders, and the reentry of old traders who have
not yet executed. At each point in time, let t, denote
the additional time until v changes, t, the additional
time until a new trader arrives, and t, a vector of
additional times until each old trader returns to the

(footnote continued)

play in the game. Second, for uninformed agents, events prior to t — 4,
offer no information about changes in v since it was last observed (at
time t— A;). Nevertheless, any particular snapshot of history is
potentially restrictive. Computational reasons require us to impose such
a restriction; without it, the state space is too large.

8 Qur U(-) corresponds to the Q function in the Q-learning literature
begun by Watkins (1989). Q-learning and other neuro-dynamic pro-
gramming techniques related to our simulation algorithm are described
in Bertsekas and Tsitsiklis (1996).

market to possibly revise his order. Let t, = min{t;}
denote the earliest reentry time across all old traders.
Whenever an event occurs, we redraw the time until
its next occurrence accordingly (recall that the time
interval between events for a Poisson process has an
exponential distribution). We also subtract the elapsed
time from the other “time until” variables.

At time zero, we start with an empty book, new draws
for t, and t,, and no existing traders (i.e., t is an empty
vector).

In theory, the initial fundamental value can be chosen
arbitrarily. However, since v follows a random walk,
the price grid would need to be infinite. To avoid this
problem, the algorithm records all prices relative to the
current v, and appropriately shifts all orders on the
book whenever v changes.'® The number of ticks
around v for which orders are tracked is chosen
sufficiently high that orders never “fall off” the grid.
That is, orders get revised by returning traders before
becoming too unaggressive for the grid, or get picked
off before becoming too aggressive for the grid. We use
an odd number of ticks, with v; itself lying on a tick at
all times.

2. At time t = min{t,, t,,t,}, an exogenous event occurs.
Suppose t, <t, and t, <t,. Then, the fundamental value
changes at time t,; with probability 1 it increases by
one tick, and with probability 1 it decreases by one tick.
As specified in item 1 above, we adjust the times for
the three events as follows. We set t, =t, —t, and
tr = t; — t,, and then draw a new time t, for the next
change in v.

Suppose, instead, t,<t, and t,<t,. A new trader
arrives to the market. His type is denoted as
0 = {p,o}. The discount factor p is the same for all
traders, and o is drawn independently from the
distribution F,. The times for the three events are
adjusted as specified in item 1.

A given trading game is used to obtain payoffs to either
equilibrium strategies or to deviator strategies in the
information acquisition game. When obtaining equili-
brium payoffs, we set I = g;(0) for the new trader.
When obtaining payoffs to deviating, we classify a
trader as a deviator with probability 0.02, as long as no
other deviators are currently in the market (to preserve
the notion of unilateral deviation). If the new trader is
a regular trader, we set I = ¢(0). If he is a deviator, we
set =1 when o/(0)=0 and I =0 when o¢/0)=1
(i.e., a deviator acquires information only when regular
traders of his type do not). Importantly, beliefs and
trading strategies of non-deviators are held fixed
throughout the algorithm when obtaining payoffs to
deviating in the information acquisition game.

Since the trader is new, we set z to one and his previous
action x to zero. The trader observes the state s =
{0,m(l),a,z} and takes an action a. If he submits a
market order, he executes and leaves the market

9 Importantly, uninformed traders observe the prices of orders on

the book relative to v;_4,, else they could directly infer v; as the mid-tick
in the book. That is, the algorithm tracks the book relative to v; but
presents it to traders relative to their last observed v.
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forever. If he takes any other action, we draw his
random return time and include it in the vector t,. We
also draw a new random time t, before the arrival of
the next new trader.

Finally, suppose t,<t, and t, <t,. An old trader returns
to the market. He observes the current state s=
{0, m(), a,z} which includes the current status a of his
previous action. He then takes some action (which could
include retaining his previous order). If he submits a
market order, he executes and leaves the market forever.
If he takes any other action, we draw his new return time
in t;, and adjust the times t, and t, as specified.

. Suppose a trader of type 0 is in the market at time ¢t.

The trader observes the current state s = {0, m(),a,z}
and chooses a payoff-maximal action a@*(s) e
argmaxe ) Ue(@ls). If the trader is informed, he
knows v¢, which determines .Z(s). If he is uninformed,
his belief about v; is used to determine .oZ(s). Denote
this belief as E(v¢|m:(0)).

Beliefs about the current fundamental value are
updated in the following manner. Let J:(m¢0)) =
E(v|m¢(0)) — v;_,4, denote the extent by which an
uninformed agent at time t revises his belief about v,
given a lagged value v;_4,. Since we consider stationary
equilibria, we drop the time subscript on market
conditions. Start with an initial belief o = 0 for each
market m(0). Let r(m(0)) be an integer denoting the
number of times market conditions m(0) are encoun-
tered in the simulation. We drop the argument of r for
notational convenience. Each time a trader observes
market conditions m(0), we increment r by one, and set

r—1

3r(m(0) =

B (MO + 1 (Ve — Vi), (®)

Recall that #(m) = E(v|jm) denotes a trader’s estimate
of the fundamental value. For an uninformed trader
who enters in market m(0), this estimate is
?(m(0)) = v¢_4, + 0;_1(m(0)), since the market m(0)
has been observed r — 1 times prior to his entry.2°
Using this estimate 7, the action set for each trader is
defined as in Eq. (4) of the text. Now, suppose
the optimal action a@* does not represent a market
order; that is, it is either a limit order or no order.
Suppose further that, at some future point of time, t’,
the trader reenters the market. He finds that his action
has evolved to @, and the new market is m’. Denote
s ={0,m),d,z).

The action a@* thus generates a realized continuation
value J(s',y,) on this visit, which is “averaged in” to the
belief Uy(a@*|s) in the following manner. We define

~s n ~x
Ue(@ls) = mut(a 1)

1 g /
+mefp(t7t)](5 V) (9)

20 Note that the updating process does not use information about
the agent’s type. Hence, this updating can be (and is) performed even
when the trader in the market is informed about the current value of v.
This allows us to construct the beliefs over v of a hypothetical
uninformed trader even when all traders in the market are informed
ones.

Here, n(a*, s) is a positive integer that is incremented

by one each time action a* is chosen in state s (for
notational brevity, the dependence of n on a@* and s is
suppressed in Eq. (9)). We start with an initial positive
integer ny for each action and state pair (a,s). This
integer affects the speed at which the algorithm
converges, with larger values implying slower conver-
gence. Periodically, during the simulation, we reset n to
no for some action and state pairs to obtain quicker
convergence.
Similarly, suppose a trader submits a limit order
(denoted by action @) at time t, and this order executes
against a market order submitted by another trader at
time t'. The actual payoff to that limit order in the
simulation is X(o+ vy —p*), where o denotes the
private value of the trader. In this case, we update

n
n+1
1

+oo g TIRE v = P (10)

Up(@'|s) = Uy(@*|s

. Whenever a trader takes an action, his belief about the

payoff to a market order is updated in similar fashion.
For example, let G, denote the action that involves
submitting a market buy order, given market m and
previous action a. In the simulation, we (as modelers)
know the payoff to a market order in every state,
whether a trader is informed about the current value of
v or not. Hence, these payoffs can be averaged in for
market orders even when such orders are suboptimal
for the trader. For this updating, we use Eq. (10), with
t'=tand vy = v

In determining the payoff to agents who deviate at the
information acquisition stage, we update beliefs for
deviators along the same lines as in items 2 and 3. This
allows us to determine the payoff to a deviator who
plays optimally in the stage game, while holding
strategies of other agents fixed at the equilibrium of
the trading game that has no deviators.

. In the simulation, most traders take the optimal action

given current beliefs. If all traders did this, there is the
possibility that the algorithm would be “stuck” at a
non-equilibrium state—every trader of a given type
would take the same action in that state, so these
traders would never learn the payoffs to other actions
in that state. If there is an error in beliefs, all traders of
that type may play suboptimally.

To ensure that beliefs are updated for all actions in
every state, we introduce trembles. Specifically, with
probability ¢ a trader trembles over all suboptimal
limit orders available to him. He chooses among
suboptimal limit orders with equal probability. The
algorithm will then naturally update the beliefs about
payoffs to this action.?!

21 When a player trembles at t' > t, the payoff of the optimal action at
t' is used to update U() to UX*'(.). Thus, traders do not anticipate
behaving suboptimally in the future.



R.L. Goettler et al. / Journal of Financial Economics 93 (2009) 67-87 87

A.3. Convergence criteria

We run the model for a few billion events until we
check for convergence. Along the way, we evaluate the
change in value functions every 300 million new trader
arrivals, by computing |U’t‘22(f1|s)— U’t‘]‘((~1|s)| for each pair
(a,s) that occurs along the path of play in the simulation.
Here, k; is the number of times the action a has been
chosen in state s at the start of the current 300 million
new trader arrivals, and k, > k; the number of times it has
been chosen at the end of the current 300 million new
trader arrivals. Further, t; and t, represent the actual time
at the start and end of the 100 million arrivals.

Essentially, if this weighted absolute difference
(weighted by k; — k) is small, that suggests the value
functions have converged. When this weighted difference
is below 0.01, we apply other convergence tests. At this
point, we hold the beliefs U(.) fixed and simulate the
model for a total 300 million more new trader arrivals
(new and returning). Let U*(d|s) be the fixed beliefs. These
imply an optimal strategy profile y*. For each (a,s), define
_](S,y*) = maxﬁe,d(s)U*(a|S)~

We compare the empirical payoffs from different
actions in the simulation to the fixed beliefs. This
comparison is done at two levels. The first is a “one-step
ahead” check based on the trader’s next entry time or
execution time, whichever is sooner. Suppose a trader
takes an action @ at time t, and reenters at t' >t with a new
state s’. His one-step ahead empirical payoff is taken to be
J1(s,y*) = e=PC=0]*(s', y*). If the trader takes an action & at
t and executes at t' >t before he can reenter, his one-step
ahead empirical payoff is J,(s,y*) = e P =9%(ot + vy — p).

Second, eventually every trader in this model executes,
and leaves the market. At the time he executes, he obtains
a realized payoff. Suppose the trader enters at t, and
eventually executes at t'. Let a@ denote his most recent
action before execution. His realized payoff is then
Jis,y*) = e PC0%(0 + vy — D).

We use two convergence criteria for each of the two
comparisons above, similar to those proposed by Pakes
and McGuire (2001), and require that a simulation satisfy
both criteria before it has converged. First, we consider the
correlation between beliefs J*(-) and realized outcomes
J or J;, and require it to exceed 0.99 (for each of our
simulations, in practice, once the second criterion is
satisfied this correlation exceeds 0.999). Second, we
consider the mean absolute error in beliefs, weighted by
the number of times the state and action are observed,
and require it to be less than 0.01.
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