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1 Introduction

Economists have long sought to understand the relationship between market structure and inno-

vation to inform policy governing antitrust, patent regulation, and economic growth. The original

theoretical hypothesis, proposed by Schumpeter (1942), posits a positive relationship between market

concentration and innovation. Arrow (1962) argues for a negative relationship, and Scherer (1967)

proposes a model yielding an inverted-U relationship. The empirical literature has found mixed

support for each of these hypotheses, partly due to the difficulty of controlling for industry-specific

factors, leading Cohen and Levin (1989) to state, “The empirical results bearing on the Schum-

peterian hypotheses are inconclusive.” Despite the absence of conclusive theoretical or empirical

evidence, the Federal Trade Commission increasingly cites the potential negative effect of competi-

tion on innovation as a concern (Gilbert 2006).

In this paper, we pursue a complementary approach to the reduced-form empirical studies in

Cohen and Levin’s review and continued by others, such as Blundell, Griffith, and Van Reenen (1999)

and Aghion et al. (2005). Rather than attempt to characterize the relationship between market

structure and innovation across industries, we focus on understanding this relationship in a particular

industry. We construct and estimate a structural model of dynamic oligopoly with endogenous

innovation to assess the effect of competition on innovation, profits, and consumer surplus in the

personal computer (PC) microprocessor industry. Because microprocessors are durable, firms must

compete with the stock of used goods and consumers must account for the evolution of prices and

qualities when timing their purchases. We model product durability and show that its effect on

equilibrium innovation can limit welfare losses due to market power. Understanding the effect of

product durability on firm behavior is important since durable goods comprise 55 percent of all

manufactured goods (Economic Report of the President, 2011).

We study the microprocessor industry for three primary reasons. First, the industry is important

to the economy: Jorgenson, Ho, and Samuels (2010) report that the computer-equipment manufac-

turing industry generated 25 percent of U.S. productivity growth from 1960 to 2007. Second, recent

antitrust lawsuits claim Intel’s anti-competitive practices, such as rewarding PC manufacturers who

exclusively use Intel microprocessors, have restricted AMD’s access to consumers. Intel settled these

claims in 2009 with a $1.25 billion payment to AMD but is still under investigation by government

authorities in the United States, Europe, and Asia.1 Finally, most studies rely on indirect measures

of innovation, such as patents, whereas innovations in microprocessors are directly measured via

improved performance on benchmark tasks.

Several industry features and stylized facts motivate our model. First and foremost, the market

is essentially a duopoly, with AMD and Intel selling 95 percent of the PC central-processing units
1S. Lohr and J. Kanter, “AMD-Intel Settlement Won’t End Their Woes,” New York Times, November 13, 2009.
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(CPUs).2 Accordingly, we cannot treat firms as being small relative to the industry, as in Hopenhayn

(1992) and Klette and Kortum (2004), and instead model their strategic interaction through Markov-

perfect Nash equilibrium. Second, AMD and Intel invest substantially in R&D—respectively, 20 and

11 percent of revenues on average over the 1993 to 2004 span of our data. Innovation is rapid,

with new products being released nearly every quarter and CPU performance doubling roughly

every seven quarters. Quarterly innovations, however, vary: the standard deviation in quarterly

performance gains is slightly higher than the average gain. Finally, AMD and Intel extensively cross-

license each other’s technologies, which leads to an industry structure in which neither firm gets too

far ahead and technological leadership changes hands. To capture these supply-side features, we

model innovation in an AMD-Intel duopoly as stochastic gains on a quality ladder in which success

is more likely with higher investments and for laggards who benefit from innovation spillovers.

Consumer behavior also guides our model. As microprocessors are durable, replacement drives

demand: 82 percent of PC purchases in 2004 were replacements (Computer Industry Almanac, 2005).

A short-term increase in innovation widens the quality gap between currently-owned products and

new offerings, boosting demand and raising prices and sales. After the upgrade boom, prices and

sales fall as replacement demand drops. Firms must continue to innovate to rebuild replacement

demand, because microprocessors do not physically depreciate. We model this upgrade cycle and

the timing of consumers’ purchases given beliefs about future prices and innovation. Because Intel

and AMD tend to revise prices and product offerings quarterly, our infinite-horizon, discrete-time

model has 3-month periods.3

To identify the effect of competition on innovation, we estimate consumer preferences and firms’

innovation efficiencies, which determine benefits and costs of innovation, and solve for equilibrium

under various competitive scenarios. This approach accords with Dorfman and Steiner (1954), Need-

ham (1975), and Lee (2005), who find consumer preferences and firm competencies are key de-

terminants of R&D. We estimate preferences and innovation efficiencies using a minimum distance

estimator to match simulated moments from our model’s equilibrium to observed aggregate moments,

such as average prices and innovation rates, constructed from quarterly CPU prices, qualities, market

shares, and innovation.4 We then compare outcomes across counterfactual simulations with AMD
2Cyrix Corporation (acquired in 1997 by National Semiconductor), Transmeta Corporation, and VIA Technologies

were fringe players trying to break into the market during the 1990s and early 2000s, but none succeeded. The AIM
Alliance of Apple Computer, IBM, and Motorola supplied the PowerPC microprocessor for Apple, which garnered a 2
percent share of sales in 2003.

3We assume a firm’s ability to commit to prices is exogenously specified by the period length: firms commit to
fixed prices within, but not across periods. Thus, we do not address the time-inconsistency problem of wanting
to commit today to a high price, but then wanting to lower it later after some consumers buy at the high price
(Coase 1972, Stokey 1981, Bulow 1982, and Bond and Samuelson 1984). Assessing the effect of period length on
industry outcomes would be interesting, though difficult to implement since it involves changing the scale of several
parameters simultaneously and tweaking the innovation process to maintain ceteris paribus.

4Several studies estimate demand for durable goods, taking product quality as exogenous (Melnikov 2001, Song and
Chintagunta 2003, Nair 2007, Gordon 2009, Gowrisankaran and Rysman 2009, and Carranza 2010). Our econometric
model differs from these in its use of supply-side equilibrium restrictions to help identify the structural parameters.
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either removed or strengthened to be an equal competitor to Intel.5 Importantly, our model can

generate either a positive or a negative relationship between competition and innovation, depending

on parameter values. The data therefore guide our conclusions.

We find the rate of innovation in product quality would be 4.2 percent higher if Intel were a

monopolist, consistent with Schumpeter. Without AMD, higher margins spur Intel to innovate

faster to generate upgrade sales. This result, however, depends on the degree of competition from

past sales. If first-time purchasers were to arrive sufficiently faster than we observe, innovation in an

Intel monopoly would be lower, not higher, since upgrade sales would be less important.

Consumer surplus would be 4.2 percent lower ($12 billion per year) in an Intel monopoly since

the surplus gains from higher innovation are smaller than the losses from the 50 percent increase in

prices. Like Coase’s (1972) conjecture and the ensuing literature, we show that product durability can

limit welfare losses from market power.6 We hypothetically vary depreciation and market growth to

show, respectively, that lowering durability or its importance increases the surplus loss from removing

AMD. Unlike Coase, though, the mechanism in our model involves innovation as well as pricing.

We also evaluate the effect of Intel’s alleged anti-competitive practices, by performing counter-

factual simulations in which we vary the share of the market from which AMD is foreclosed. The

industry innovation rate peaks when AMD is foreclosed from half the market and consumer sur-

plus peaks with 40 percent foreclosure. This latter result reveals that the surplus gains from faster

innovation can exceed losses due to higher prices. We therefore find support for the FTC’s recent

emphasis on the dynamic trade-off between lower current consumer surplus from higher prices and

higher future surplus from more innovation.

To further understand the relationship between competition and innovation, we perform addi-

tional comparative statics by varying (i) consumer preferences for quality and price, (ii) product

substitutability, and (iii) the degree of innovation spillovers that enable firms to innovate more effi-

ciently when catching up to the frontier.

We find that equilibrium innovation rates increase monotonically as preferences for quality in-

crease and as price sensitivity declines, for both duopoly and monopoly. As explained in section 5,

duopoly innovation is more sensitive to preferences. Consequently, industry innovation is higher in

the duopoly than in the monopoly when quality preferences are high and price sensitivity is low.

Innovation spillovers reduce incentives for leaders to innovate but also ensure laggards do not

fall so far behind that they give up trying to remain competitive, as they do in our model without

spillovers. We show duopoly innovation increases as spillovers decrease, as long as the laggard never

concedes leadership. With no spillovers or large spillovers, monopoly innovation is higher than

duopoly innovation, but with moderate spillovers duopoly innovation is higher.
5Our model can be extended to yield an endogenous number of firms. Counterfactuals in the number of firms would

then correspond to exogenous shifts in entry and exit costs.
6Carlton and Gertner (1989) show that competition from past sales of durable goods limits the welfare loss of

mergers that increase market power. See the review article by Waldman (2007).
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As a whole, our comparative statics demonstrate that competition’s effect on innovation depends

on industry characteristics that likely vary across industries and perhaps across time within an

industry. Such variation might be one reason cross-industry studies have difficulty identifying robust

relationships.

Our work relates to the literatures on endogenous growth theory and dynamic oligopoly. A series

of papers in endogenous growth theory (Aghion and Howitt 1992, Aghion et al. 2001, and Aghion

et al. 2005) examines the relationship between competition and innovation. In addition to providing

suggestive evidence of an inverted-U relationship between the Lerner index and patent-production

in UK industries, Aghion et al. (2005) develop a model of technological innovation that generates

this relationship. We demonstrate that the durability of goods and nonzero investment by frontier

firms in our model generate implications that differ from those in Aghion et al. (2005).

Vives (2008) also investigates the effect of competition on innovation by firms selling nondurable

goods. He finds firms innovate less when facing more competitors and innovate more when com-

petition increases via greater product substitutability. We find, with durable goods, that the effect

of more competitors on innovation depends on consumer preferences and the strength of innovation

spillovers.

Our work is a natural extension of the early industry simulation models of Nelson and Win-

ter (1982) and Grabowski and Vernon (1987) and to the dynamic oligopoly model of Ericson and

Pakes (1995, hereafter EP). The EP framework has been applied to a variety of industries, as sum-

marized by Doraszelski and Pakes (2007), but none of the studies considers durable goods with

forward-looking consumers and endogenous innovation. Given the prominence of durable goods in

our economy (e.g., airplanes, automobiles, consumer electronics, etc.) and the importance of inno-

vation for economic growth, filling this gap is a major contribution of our paper.

We incorporate durable goods into the EP framework as applied to differentiated products by

Pakes and McGuire (1994).7 In our model, firms make dynamic pricing and investment decisions

while taking into account the dynamic behavior of consumers. In turn, when considering to buy now

or later, consumers account for the fact that firms’ strategies lead to higher-quality products and

lower prices. Since consumers’ choices depend on the products they currently own, the distribution

of currently-owned products affects aggregate demand. We model the endogenous evolution of this

distribution and its effect on equilibrium behavior. Prices, innovation, profits, and consumer surplus

are all substantially higher when firms correctly account for the dynamic nature of demand arising

from durability. We find that ignoring the dynamic nature of demand for durable goods leads to a

reversal of the effect of competition on innovation.
7The theoretical literature on durable goods, reviewed by Waldman (2003), focuses on monopoly and perfect com-

petition, whereas we consider the more empirically relevant market structure of oligopoly. This literature also focuses
on endogenous product durability (i.e., the rate of depreciation), whereas we study endogenous obsolescence due to
innovation. Though similar, durability and obsolescence have an important difference: durability entails commitment
since the good is produced with a given durability, whereas obsolescence depends on future innovations.
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In the EP framework, the industry’s long-run innovation rate equals the exogenous rate at which

the outside good’s quality improves because returns to innovation are assumed to go to zero when

a firm’s quality is sufficiently higher than the outside good, regardless of competitors’ qualities. We

relax this assumption to obtain an endogenous long-run innovation rate that depends on consumer

preferences and firms’ technologies. Endogenous innovation is important for policy work because the

compounding effects of innovation on consumer surplus can dominate pricing effects.8

In the following section, we describe aspects of the microprocessor industry that motivate our

model and empirical strategy. In section 3, we present our model of firm and consumer behavior.

In section 4, we estimate the model using the microprocessor data and discuss implications specific

to that industry. In section 5, we perform a series of comparative statics to further illustrate the

model’s properties and its implications for other industries. Section 6 concludes.

2 Data and Industry Background

Intel co-founder Gordon Moore predicted in 1965 that the number of transistors per integrated

circuit would double every two years, thereby doubling performance. Panel (a) of Figure 1 depicts

“Moore’s law” over the 48 quarters in our data from 1993 through 2004 by plotting the log-quality of

the frontier CPU for Intel and AMD, where quality is measured using processor speed benchmarks

from www.cpuscorecard.com and www.cpubenchmark.net.9 The mean quarterly percentage change

in CPU performance from 1993 to 2004 is 10.2 percent for Intel and 11 percent for AMD. Nearly

one-fifth of the quarters have gains exceeding 20 percent and more than one-fifth of the quarters

have no improvements in frontier quality. Accordingly, We model firms as innovating with uncertain

outcomes to climb a quality ladder.

The largest performance gains result from major redesigns of the microprocessor die, such as

Intel’s progression from the 386 to the 486 to the Pentium and AMD’s progression from the K5

to the K6 to the Athlon. Smaller gains arise from other design changes, such as adding a math

coprocessor to the 486SX to create the 486DX. From 1993 to 2004, AMD and Intel sold processors

from 10 and 20 different die designs, respectively. As a firm gains experience manufacturing a given

design, the yield of usable dies from each silicon wafer increases, which lowers unit costs. With

experience, the firm also increases processor speed. An average of 8.2 processor speeds were offered

for each die-design.

Since few consumers purchase frontier CPUs, we average the log-qualities of each firm’s CPU
8Goettler and Gordon (2011) use a dynamic oligopoly model similar to the one in this paper to investigate the

relationship between various measures of competition and innovation when goods are nondurable.
9We splice two benchmarks to construct a single index of quality comparable across product generations since

no single benchmark spans our dataset. The growth of mobile computing and server farms in recent years has led
consumers and firms to focus on power consumption as well as execution speed. Over our period, however, desktops
comprised over 80 percent of CPU sales and performance per unit time, not per watt, was the focus.
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offerings in each quarter and plot the difference in average log-qualities in panel (b) of Figure 1.10

Intel’s initial quality advantage is moderate in 1993 to 1994, then becomes large when it releases

the Pentium. AMD’s introduction of the K6 processor in 1997 narrows the gap, but parity is not

achieved until sales of the AMD Athlon gained traction in mid-2000.

Unit shipments, manufacturers’ average selling prices (ASP), and production costs are provided

by In-Stat/MDR, a market research firm specializing in the microprocessor industry. ASPs in

panel (d) are lower and less variable than frontier-product prices in panel (c). We assume retail

CPU prices are the same as manufacturer prices since consumers tend to buy CPUs as part of a PC

and the PC manufacturing sector is competitive, with margins below 5 percent.11 All prices and

costs are converted to base year 2000 dollars.

The covariation in Intel’s share of sales, its quality advantage, and its ASP is evident by comparing

their plots, vertically arranged on the right-hand side of Figure 1. Over our sample, the correlation

between Intel’s ASP and its quality advantage is .66, and the correlation between AMD’s ASP

and Intel’s advantage is −.34. The correlation between Intel’s share and its quality advantage is

.39. These correlations are consistent with the model we present in section 3 and help identify its

parameters, as discussed in section 4.1.2.

CPU prices also depend on competition from CPUs bought in the past. To measure such competi-

tion, we average the log-quality of currently-owned CPUs, as reported in consumer surveys conducted

by Odyssey, a consumer research firm specializing in technology products.12 This average quality

trails the quality of frontier CPUs in panel (c) for two reasons: consumers rarely purchase the frontier

product and only upgrade every 3.3 years (Gordon, 2009). The correlation of each firm’s price with

its quality relative to the average quality currently owned is .69 for Intel and .37 for AMD.

Although prices and production costs of a given processor fall over time, more complicated chip

designs lead to stationary prices and unit costs, as depicted in panels (d) and (e) in Figure 1. The

significant correlation of .48 between each firm’s unit costs (sales-weighted blended unit production

costs) and its quality relative to its competitor motivates our model for costs in the next section.

Finally, quarterly R&D investment levels, obtained from firms’ annual reports, are a relatively

constant share of revenue. Although AMD’s investment share of revenue is nearly double Intel’s

share, AMD’s investment level is about one-fourth the level of Intel. Nonetheless, AMD is able to
10Ideally we would use sales of each CPU to construct average log-quality, but we only observe quantities at the

die-design level. In each quarter, we equally allocate a die’s sales across the CPUs with its design.
11In 2002, 30% of PCs were sold by unbranded “white box” manufacturers (J. Spooner, “Dell Eyes ‘White-Box’

Market,” CNET News, August 20, 2002).
12The semi-annual Homefront surveys by Odyssey provide a national sample of 1500 to 2500 households reporting

the processor speed and manufacturer of their primary or most recently purchased PC. We interpolate these semi-
annual ownership distributions yielding quarterly data that we combine with the quarterly penetration rate of PCs in
U.S. households to obtain the ownership distribution across all consumers, including those who have yet to adopt. We
assume consumers who have yet to purchase a PC have public access to a PC with a processor 7.8 percent the speed
of the frontier. For comparison, the 80286 processor (three generations before the Pentium) is 8.6 percent the speed of
the Pentium.
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offer similar, sometimes even higher, quality products beginning in 1999. To explain this asymmetry,

our model in the next section allows for innovation spillovers since AMD is usually in the position

of playing catch-up.

3 Model

We present a dynamic model of differentiated-products oligopoly for a durable good. Although we

interpret some model details in the context of microprocessors, the model applies to any durable

good. We abstract away from the role of computer manufacturers because consumers can choose

either firm’s microprocessors regardless of their choice of other computer components (e.g., disk

drive, memory, video card, monitor, etc.).

Time, indexed by t, is discrete with an infinite horizon. Each firm j ∈ {1, . . . , J} sells

a single product and invests to improve its quality. If successful, quality improves next pe-

riod by a fixed proportion; otherwise it is unchanged.13 Consequently, we denote log-quality

qjt ∈ {. . . ,−2δ,−δ, 0, δ, 2δ, . . .}.
A key feature of demand for durable goods is that the value of the no-purchase option is en-

dogenous because it depends on past choices. Consumers decide each period whether to buy a new

product or to continue using the one they already own. This feature generates a dynamic trade-off for

pricing: selling more in the current period reduces demand in future periods because recent buyers

are unlikely to buy again in the near future. The distribution of currently-owned products, denoted

∆t, therefore affects current demand.

Firms and consumers are forward-looking and take into account the optimal dynamic behavior of

other agents when choosing their respective actions. All agents observe the vector of firms’ qualities

qt = (q1t, . . . , qJt) and the ownership distribution ∆t. These two state variables comprise the state

space of payoff-relevant variables for firms simultaneously choosing prices pjt and investment xjt.

The consumer’s state space consists of the quality of her currently-owned product q̃t, the firms’

current offerings qt, and the ownership distribution ∆t. This latter state variable is relevant to the

consumer since it affects firms’ current and future prices and investment levels. We assume consumers

observe ∆t merely as a convenient way to impose rational expectations of future prices and qualities.

Rationality requires consumers to act as if they condition on the ownership distribution since it

influences innovation and future prices through firms’ policy functions.

We restrict firms to sell only one product because the computational burden of allowing multi-

product firms is prohibitive—the state space grows significantly and the optimization within each

state becomes substantially more complex. Accounting for multiple products would be important

if our focus were on price discrimination or product-line pricing and quality choices (Aizcorbe and
13Borkovsky (2008) studies the timing of new releases, and Holmes, Levine, and Schmitz (2011) explore the effect of

switchover disruptions on the incentives to innovate.
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Kortum 2005, Gordon 2009, and Nosko 2010). Our demand model captures the market features

that are most relevant for our focus on endogenous innovation: consumers upgrade when the offered

qualities are sufficiently higher than their currently-owned quality, and consumers expect innovations

to raise future quality and lower future prices per unit quality.

We do not consider entry and exit since they rarely occur in the CPU industry. We also do not

consider secondary markets since computers and microprocessors are rarely resold. With resale, the

ownership distribution would convey the set of used goods available for trade, as in the model with

car resale in Chen, Esteban, and Shum (2011).

3.1 Consumers

We model consumers as owning one microprocessor at a time.14 Utility for a consumer i from firm

j’s new product with quality qjt is given by

uijt = γqjt − αpjt + ξj + εijt , (1)

where γ is the taste for quality, α is the marginal utility of money, ξj is a brand preference for firm

j, and εijt captures idiosyncratic variation, which is i.i.d. across consumers, products, and periods.15

We assume brand preference only affects utility at the time of purchase and normalize the brand

preference for the no-purchase option to be zero. Utility from the no-purchase option is then

ui0t = γq̃it + εi0t . (2)

In principle, the model has two outside alternatives: for consumers with previous purchases, q̃it is

the quality of their most recent purchase, and for non-owners q̃it is the quality available through

other means, such as public access.16

To facilitate bounding the state space, we assume q̃it is within δ̄c of the industry’s frontier product.

That is, q̃it ≥ qt ≡ q̄t− δ̄c, where q̄t ≡ max(qt). To ensure our choice of δ̄c does not affect equilibrium

behavior, we check that consumers upgrade frequently enough that the quality of their most recent

purchase rarely matches qt.

Since the ownership distribution only has mass at vintages weakly above qt, we define the own-

ership state variable ∆t = (∆qt,t, . . . ,∆k,t, . . . ,∆q̄t,t), where ∆k,t is the fraction of consumers whose

outside option has quality q̃it = qkt.

Each consumer maximizes her expected discounted utility, yielding a value function V that satis-
14Cho (2008) estimates a dynamic model of computer replacement by a telecommunications firm using many com-

puters.
15As explained in Rust (1996), the independence from irrelevant alternatives (IIA) property of logit demand fails to

hold in dynamic contexts since the attributes of all the products enter the continuation values.
16For CPUs, the outside good for non-owners might consist of using computers at schools and libraries or using old

computers received from family or friends who have upgraded.
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fies Bellman’s equation. Omitting i and t subscripts for conciseneness and using the prime superscript

to denote next period values,

V (q,∆, q̃, ε) = max
y∈(0,...,J)

uy + β
∑
q′,∆′

∫
V (q′,∆′, q̃′y, ε

′) fε(ε′)dε′ hc(q′|q,∆, ε) gc(∆′|∆, q, q′, ε), (3)

where y denotes the optimal choice in the current period, hc(·|·) is the consumer’s beliefs about

future product qualities, gc(·|·) is the consumer’s beliefs about the transition kernel for ∆′, and fε is

the density of ε. The evolution of q̃ is trivial: if y = 0 then q̃′ = max(q̃, q′); otherwise q̃′ = qy. Each

consumer is small relative to the market so that her actions do not affect the evolution of ∆ to ∆′.

Following Rust (1987), we assume ε are multivariate extreme-value and integrate over ε to obtain

the smoothed Bellman equation

V̄ (q,∆, q̃) = log

 ∑
j∈{0,...,J}

exp

uj − εj + β
∑
q′,∆′

V̄ (q′,∆′, q̃′j) hc(q
′|q,∆) gc(∆′|∆, q, p, q′)


 , (4)

from which we construct product-specific value functions:

vj(q,∆, q̃) = uj − εj + β
∑
q′,∆′

V̄ (q′,∆′, q̃′j) hc(q
′|q,∆) gc(∆′|∆, q, p, q′) . (5)

The conditional choice probabilities for a consumer currently owning product q̃ are therefore

sj|q̃ =
exp{vj(q,∆, q̃})∑

k∈{0,...,J}
exp{vk(q,∆, q̃)} . (6)

Using ∆ to integrate over the distribution of q̃ yields the market share of product j:

sj =
∑

q̃∈{q,...,q̄}

sj|q̃ ∆q̃ . (7)

These market shares translate directly into the law of motion for ∆, which tracks the ownership of

products between qt and q̄. Assuming q̄ is unchanged between the current and next periods, the share

of consumers owning a product of quality k at the start of the next period is the share who retain

product k plus the share of consumers who bought a new product from any firm offering quality k.

If a firm advances the quality frontier with a successful R&D outcome then ∆′ shifts because the

ownership distribution is defined relative to the frontier quality. We relegate the notational details

of the evolution of ∆ to a footnote.17

17Assuming q̄ is unchanged between the current and next periods and letting I(·) denote an indicator function

∆′k(∆, q, p|q̄′ = q̄) = s0|k∆k +
P

j=1,...,J

sjI(qj = k) .
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3.2 Firms

Each period, firms make dynamic pricing and investment decisions. Each firm has access to an R&D

process that governs its ability to introduce higher-quality products and chooses an investment level

xj ∈ R+.18 We restrict the innovation outcome τj = q′j − qj to be either 0 or δ, with the probability

of success given by

χj(τ = δ|x, q) =
aj(q)x

1 + aj(q)x
, (9)

which yields a closed form for optimal investment (Pakes and McGuire, 1994). The investment

efficiency aj(q) = a0,j max(1, a1( q̄−qjδ )1/2) is higher for firms below the frontier (q̄−qj > 0), assuming

a positive innovation spillover a1. This spillover implies an increased difficulty of advancing the

frontier relative to catching up to it.19 Linear and convex spillovers yield similar results to the

concave aj(q) we use. The probability of failure is χj(τ = 0|x, q) = 1− χj(τ = δ|x, q).
The period profit function, excluding investment costs, for firm j is

πj(p, q,∆) = Msj(p, q,∆)(pj −mcj(q)) , (10)

where M is the fixed market size, sj(·) is the market share for firm j from equation (7), and p is

the vector of J prices. In section 4.1.3 we discuss the possibility of reallocating mass to the lowest

vintage in ∆ to capture one effect of consumers entering the market, while retaining fixed M to

ensure stationarity. Firm j’s constant marginal costs are given by

mcj(q) = λ0 + λ1 (q̄ − qj) , (11)

where λ1 < 0 implies production costs are lower for non-frontier firms. In our application, |λ1| is

small enough that marginal costs are always positive.

Each firm maximizes its expected discounted profits, for which the Bellman equation is

Wj(qj , q−j ,∆) = max
pj ,xj

πj(p, q,∆)−xj+β
∑

τj ,q′−j ,∆
′

Wj(qj+τj , q′−j ,∆
′)χj(τj |xj , q)hfj

(q′−j |q,∆)gfj
(∆′|∆, q, p),

(12)

If a firm advances the quality frontier then ∆′ shifts: the second element of ∆′ is added to its first element, the third
element becomes the new second element, and so on, and the new last element is initialized to zero. Formally, define
the shift operator Γ on a generic vector y = (y1, y2, . . . , yL) as Γ(y) = (y1 + y2, y3, . . . , yL, 0). If the quality frontier
advances at the end of the current period, we shift the interim ∆′ in the above equation via Γ(·). Hence

∆′(∆, q, p) = I(q̄′ = q̄)∆′(∆, q, p|q̄′ = q̄) + I(q̄′ > q̄)Γ
`
∆′(∆, q, p|q̄′ = q̄)

´
. (8)

18Pillai (2009) finds innovation in the microprocessor industry depends in part on innovations by upstream manu-
facturers of semiconductor equipment. We implicitly assume these external forces do not vary over time.

19If recent investments have failed to increase quality, the firm is more likely to be a laggard. The spillover there-
fore mimics, to a degree, the effect of including a state variable for cumulative R&D investments since the previous
innovation. Actually including such a state variable significantly raises the computational burden.
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where hfj
(·|·) is firm j’s beliefs about competitors’ future quality levels, and gfj

(·|·) is its beliefs

about the transition kernel for ∆, which is based on beliefs about consumers’ choices given prices

and qualities.

Firms simultaneously choose prices and investments to satisfy the first-order conditions

∂W

∂pj
=
∂πj(p, q,∆)

∂pj
+β

∑
τj ,q′−j ,∆

′

Wj(qj+τj , q′−j ,∆
′)hfj

(q′−j |q,∆)
∂gfj

(∆′|∆, q, p)
∂pj

χj(τj |xj , q) = 0 (13)

and

∂Wj

∂xj
= −1 + β

∑
τj ,q′−j ,∆

′

Wj(qj + τj , q
′
−j ,∆

′)hfj
(q′−j |q,∆)gfj

(∆′|∆, q, p)∂χj(τj |xj , q)
∂xj

= 0. (14)

Recall the important dynamic trade-off—a higher price today implies more people will be available

in the next period to purchase the product. The presence of
∂gfj

(∆′|∆,q,p)
∂pj

in ∂W
∂pj

captures this benefit

of raising price and leads to forward-looking firms pricing higher than myopic firms that ignore this

dynamic aspect of demand.

3.3 Equilibrium

We consider pure-strategy Markov-Perfect Nash Equilibrium (MPNE) of this dynamic oligopoly

game. Our MPNE extends that of Ericson and Pakes (1995) to account for the forward-looking

expectations of consumers. In brief, the equilibrium fixed point has the additional requirement that

consumers possess consistent expectations about the probability of future states.

The equilibrium specifies that (1) firms’ and consumers’ equilibrium strategies depend only on

current state variables, which comprise all payoff-relevant variables, (2) consumers have rational

expectations about firms’ policy functions, which determine future qualities and prices, and the evo-

lution of the ownership distribution, and (3) each firm has rational expectations about competitors’

policy functions for price and investment and about the evolution of the ownership distribution.

Formally, an MPNE in this model is the set
{
V ∗, h∗c , g

∗
c ,
{
W ∗j , x

∗
j , p
∗
j , h
∗
fj
, g∗fj

}J
j=1

}
, which con-

tains the equilibrium value functions for the consumers and their beliefs h∗c about future product qual-

ities, beliefs g∗c about future ownership distributions, and the firms’ value functions, policy functions,

beliefs h∗fj
over their J−1 rivals’ future qualities, and beliefs g∗fj

about the future ownership distribu-

tion. The expectations are rational in that the expected distributions match the distributions from

which realizations are drawn when consumers and firms behave according to their policy functions.

In particular, h∗c(q
′|q,∆, q̃) =

∏J
j=1 χj(τ = q′j−qj |x∗j , q), h∗fj

(q′−j |q,∆) =
∏J
k 6=j χj(τ = q′k−qk |x∗k, q),

and g∗c and g∗fj
are derived from the law of motion for ∆ as described in footnote 17.

In some of the counterfactuals and comparative statics, we impose symmetry, which implies

W ∗j = W ∗, x∗j = x∗, p∗j = p∗, h∗fj
= h∗f , and g∗fj

= g∗f for all j. Symmetry also requires firm-specific
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parameters—brand intercepts ξj and investment efficiencies a0,j—to be the same across firms.

Besanko et al. (2010) and Borkovsky, Doraszelski, and Kryukov (2010) document the existence

of multiple equilibria in dynamic oligopoly models based on EP. To reduce multiplicity, we focus

on equilibria that are limits to finitely repeated games: we use backwards induction to solve for

an equilibrium of the T -period game and then let T → ∞. For each T and for each state, we

solve the system of first-order conditions in equations (13) and (14). Our numerical algorithm for

computing equilibrium to the infinite horizon game corresponds to value function iteration with (a)

initial values of zero for V̄ and W and (b) equilibrium strategies being played within each state for

each iteration, as opposed to merely playing best responses to strategies from the previous iteration.

This refinement yields a unique equilibrium if the subgame within each state at each iteration has

a unique equilibrium. Inspections of best-response functions at various states during convergence

suggests this refinement indeed yields a unique equilibrium.

We relegate the algorithmic details of computing and simulating the MPNE to Appendix A. One

issue worth highlighting is that to evaluate firms’ first-order conditions, we must solve a fixed-point

in ∆′ such that consumers’ current beliefs about ∆′ match the ∆′ in equation (8) that results from

the choice probabilities in equation (6).

3.4 Bounding the State Space

Product qualities qt increase without bound. To numerically solve for equilibrium, we transform the

state space to one that is finite by measuring all qualities relative to the current period’s maximum

quality q̄ = max(q). Our ability to implement this transformation without altering the dynamic

game itself hinges on the following proposition.

Proposition 1. Shifting q and q̃ by q̄ has no affect on firms’ payoffs and shifts consumers’ payoffs

in each state by γq̄
1−β , the discounted value of the reduced utility in each period. More formally,

Firms: Wj(qj − q̄, q−j − q̄,∆) = Wj(qj , q−j ,∆)

Consumers: V (q − q̄,∆, q̃ − q̄, ε) + γq̄
1−β = V (q,∆, q̃, ε) .

(15)

The proof, which appears in Appendix B, rests on the following properties of the model: (1) log-

quality q enters linearly in the utility function, so that adding any constant to the utility of each

alternative has no effect on consumers’ choices; (2) Innovations are governed by χj(·), which is

independent of quality levels; and (3) ∆ is unaffected by the shift since it tracks the ownership

shares of only those products within δ̄c of the frontier. That is, ∆ is already in relative terms.

To facilitate writing the value functions in terms of a relative state space, we define ω = q − q̄
and ω̃ = q̃− q̄ as analogs to the original state variables. We also define the indicator variable Iq̄ = 1

if q̄′ > q̄ to indicate an improvement in the frontier product. We can then express the consumer’s
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product-specific value function in equation (5) using the relative state space as

vj(ω,∆, ω̃) = γωj −αpj + ξj +β
∑
q′,∆′

(
γδIq̄
1− β + V̄ (ω′,∆′, ω̃′)

)
hc(Iq̄, ω′|ω,∆) gc(∆′|∆, ω, p, Iq̄), (16)

where the outside alternative’s p0 and ξ0 are zero and, in a slight abuse of notation, hc(Iq̄, ω′|ω,∆)

and gc(∆′|∆, ω, p, Iq̄) are the analogs of the consumer’s transition kernels for q′ and ∆′ in the original

state space. γδIq̄
1−β is the discounted value of one δ-step of quality each period, which must be explicitly

added when an improvement in frontier quality causes ω̃′ to drop by δ even though q̃′ is unchanged.

Since vj is the product-specific value function, ω̃′ = ω′j .

Firm j’s value function in equation (12) using the relative state space becomes

Wj(ωj , ω−j ,∆) = max
pj ,xj

πj(p, ω,∆)− xj + β
∑

τj , ω′−j , Iq̄ , ∆′
Wj(ωj + τj − Iq̄, ω′−j − Iq̄,∆′)

hfj
(Iq̄, ω′−j |ω,∆) gfj

(∆′|∆, ω, p, Iq̄) χj(τj |xj , ω) ,
(17)

where ω′−j refers to competitors’ continuation qualities prior to shifting down by δ in the event

that the frontier’s quality improved. Again, we slightly abuse notation by using hfj
(Iq̄, ω′−j |ω,∆),

χj(τj |xj , ω), and gfj
(∆′|∆, ω, p, Iq̄) as the analogs of the firm’s transition kernels for competitors’

qualities and ∆′.

Finally, we invoke a knowledge-spillover argument to bound the difference between each firm’s

quality and the frontier quality. We denote the maximal difference in firms’ qualities δ̄f and modify

the transition kernels χj(·) and hfj
(·) accordingly. We choose δ̄f < δ̄c since, in most markets, quality

differences among new products are less than the quality gap between the frontier and products from

which consumers have yet to upgrade. We also choose δ̄f to be sufficiently large that firms never

reach the bound in equilibria computed during estimation. Note that if firms were permitted to

exit, quality differences would be bounded automatically by the exiting of firms with sufficiently low

relative quality.

Our bounding approach differs from the EP framework for differentiated products, as detailed

in Pakes and McGuire (1994) and Doraszelski and Pakes (2007).20 In EP, the industry’s long-

run innovation rate is solely determined by the exogenous innovation rate of the outside good.

Improvements in the outside good provide a continual need for inside firms to invest to remain

competitive. If the outside good never improves, the equilibrium has no investment and no innovation

in the long run. In our model, the long-run rate of innovation is an equilibrium outcome that depends

on consumer preferences, firms’ costs, and the regulatory environment.
20The standard normalization in discrete choice models subtracts the mean utility of the outside good from all

options. EP, however, subtracts the outside good’s quality from firms’ qualities inside a concave function. Concavity
implies the derivative of market share with respect to a firm’s own quality goes to zero regardless of competitors’
qualities. Since investment is costly, a relative quality above which investment is zero will exist, thereby establishing
an upper bound. Firms exit when relative quality gets sufficiently low, which establishes the lower bound.
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In essence, EP defines quality relative to the outside good and generates an upper bound by ma-

nipulating the behavior of lead firms, whereas we define quality relative to the frontier and generate

a lower bound by truncating the degree to which firms and outside options can be inferior. Since in-

dustry leaders generate most of the sales, profits, and surplus, assumptions regarding severe laggards

are more innocuous than assumptions restricting the benefits to innovation by frontier firms.

4 Empirical Application

This paper has two components: a theory component that develops a dynamic oligopoly model with

durable goods and an empirical component that applies the model to the CPU industry. In the

empirical application, we account for important asymmetries between Intel and AMD by allowing

them to differ in their brand fixed-effects and costs of production and innovation. In section 5, we

present comparative statics for the symmetric case in which firms have identical brand intercepts

and innovation efficiencies, to illustrate broader implications of the model.

4.1 Estimation

We estimate the cost parameters λ = (λ0, λ1) in equation (11) in a first stage using linear regression,

yielding λ̂. To estimate the dynamic parameters θ = (γ, α, ξIntel, ξAMD, a0,Intel, a0,AMD, a1), we use

a method of simulated moments (MSM) estimator that minimizes the distance between a set of

unconditional moments of our data and their simulated counterparts from our model. Hall and

Rust (2003) refer to this type of estimator as a simulated minimum distance (SMD) estimator

because it minimizes a weighted distance between actual and simulated moments. One may also

view the estimator as taking the indirect inference approach of Smith (1993), Gouriéroux, Monfort,

and Renault (1993), and Gallant and Tauchen (1996) in which the moments to match are derived

from an auxiliary model that is easier to evaluate than the structural model of interest. Regardless

of the label used, the estimator is in the class of generalized method of moments (GMM) estimators

introduced by Hansen (1982) and augmented with simulation by Pakes and Pollard (1989).

For each candidate value of the K-vector θ, we solve for equilibrium and simulate the model S

times for T periods each, starting at the initial state (ω0,∆0) in the data. The simulated minimum

distance estimator θ̂T , which we detail in Appendix C, is

θ̂T = argmin
θ∈Θ

(mS,T (θ; λ̂)−mT )′AT (mS,T (θ; λ̂)−mT ) , (18)

where mT is the L-vector of observed moments, mS,T (θ) is the vector of simulated moments, and

AT is an L× L positive definite weight matrix. We use enough simulations that the variance in the

estimator is due entirely to the finite sample size. Hence, the efficient weight matrix is the inverse

of the covariance matrix of the actual data’s moments. We use 10,000 bootstrap replications to
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estimate this covariance matrix. Since we obtain the efficient weight matrix directly from the data,

we do not need a two-step GMM estimator to obtain efficiency.

A valid concern with using moments based on simulated equilibrium outcomes is that the equi-

librium may not be unique. Two-stage approaches in which policy functions are first estimated

nonparametrically, as in Bajari, Benkard, and Levin (2007), permit the model to have multiple

equilibria. Their assumption that the data arise from the same equilibrium is weaker than our as-

sumption that the model has a unique equilibrium. Unfortunately, we do not have sufficient data to

use a two-stage approach. As discussed in section 3.3, we only consider equilibria that are limits of

finite horizon games to reduce the concern of multiple equilibria.

4.1.1 Moments to Match

We match a combination of simple moments and coefficients from linear approximations to firms’

policy functions. One difference between our model and the real world requires care when choosing

moments to match. For stationarity, we assume market size M is fixed, whereas the data exhibit

an upward trend in sales, revenues, and R&D expenditures. We therefore choose moments that are

stationary in both the data and the model. For example, we match investment per unit revenue,

which is stationary in the data, instead of the trending investment levels.

Our moment vector, mT , consists of the following 15 moments:

• average prices and the coefficients (other than the constant) from regressing each firm’s price

on a constant, qIntel,t−qAMD,t, and qown,t−∆̄t, where ∆̄t =
∑q̄t

k=qt
k∆kt is the mean log-quality

currently owned in period t,

• coefficients from regressing Intel’s share of sales on a constant and qIntel,t − qAMD,t,

• mean (q̄t − ∆̂t), where ∆̂t is the same as ∆̄t except non-owners are excluded. This moment

captures the rate at which consumers upgrade: if consumers upgrade quickly, all else equal,

the average difference between q̄t and ∆̂t will be low.

• mean innovation rates for each firm, defined as 1
T (qT − q0)/δ,

• mean (qIntel,t − qAMD,t) and share of quarters with qIntel,t ≥ qAMD,t, and

• mean investment per unit revenue for each firm.21

Recall that q and ∆ measure log-quality which implies quality differences are proportional. These

moments and their fitted values appear in Table 1.
21R&D and revenue data correspond to firm-wide activity. In the absence of R&D expenditures for different aspects

of their businesses, we assume Intel and AMD invest in their business units proportional to the revenue generated by
each unit. For both firms, microprocessors comprise the bulk of revenues. According to Intel’s 2003 annual report, its
microprocessor unit delivered 87 percent of its consolidated net revenue.
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4.1.2 Identification

Experimentation with the structural model reveals the moments we seek to match are sensitive to

the structural parameters. Being a nonlinear model, all the structural parameters influence all the

moments, though the connections between some parameters and moments are more direct.

The demand-side parameters (α, γ, ξIntel, ξAMD) are primarily identified by the pricing moments,

the Intel share equation moments, and the mean ownership quality relative to the frontier quality.

The pricing moments respond sharply to changes in any of these four parameters. The market share

equation is primarily sensitive to γ and ξIntel − ξAMD. The mean (q̄t − ∆̂t) decreases if consumers

upgrade more quickly and is akin to an outside share equation that identifies the levels of ξ. We

interpret ξIntel as a hassle cost of upgrading one’s computer and ξIntel − ξAMD as a brand effect.

The supply-side parameters (a0,Intel, a0,AMD, a1), which govern the investment process, are pri-

marily identified by observed innovation rates, quality differences, and investment levels. The in-

vestment efficiencies are chosen such that the observed investment levels (per unit revenue) yield

innovation at the observed rates. The spillover parameter a1 is chosen to match the mean difference

in quality across firms—a high spillover keeps the qualities similar.

The ability of our estimator to recover consumer preferences and firms’ innovation parameters is

important for our empirical strategy of identifying the effect of competition on innovation. We do

not observe variation in the number of firms. Consequently, our conclusions regarding the effect of

competition on innovation rely on estimating the costs and benefits of innovation, as determined by

the structural parameters governing supply and demand.

One could consider variation in firms’ relative qualities as a form of market structure variation

and investigate its relationship with innovation. In our data, innovation since the previous quarter

is positively related to that quarter’s difference in firms’ qualities. We do not use these moments,

however, since the p-values are .12 and .18 for AMD and Intel, respectively. We note in our discussion

of firms’ policy functions in section 4.2.1, however, that the innovation policies exhibit this same

positive correlation.

4.1.3 Estimates

We use the simulated minimum distance estimator in equation 18 to estimate the dynamic parameters

θ given the first-stage marginal cost estimates λ̂. We first fix a few model-setup parameters. We set

δ to .1823, which yields quality gains of 20 percent between rungs on the quality ladder. We set δ̄c
to 5.287, which corresponds to a maximum of 29 δ-steps between consumers’ q̃ and the frontier. Our

choice of δ and δ̄c reflects the following considerations: (i) the ability to replicate “Moore’s Law”

when firms innovate in 40 to 60 percent of the periods, (ii) a sufficiently high δ̄c that consumers

rarely reach the lowest grid point before upgrading, and (iii) computation time. We choose δ̄f to

be eight δ steps, which exceeds the observed maximum quality difference of 5.2 δ-steps. Since our
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quantity data are quarterly and firms’ pricing and product releases are roughly quarterly, we assume

each period is three months and set β to .975. We set the market size M to 400 million consumers,

such that the model’s implied market capitalizations for Intel and AMD are similar to their observed

values.

The market size for microprocessors is arguably growing over time as new computer applications

are developed and as complimentary components (e.g., memory, disk drives, and monitors) become

better and cheaper. Market expansion corresponds to adding new consumers with vintage q and

increasing M accordingly. Unfortunately, increasing M results in a non-stationarity that is compu-

tationally burdensome. Instead, we adjust ∆′ to reflect the composition effect of market expansion by

adding a mass of consumers, equal to 2.6 percent of M , to the lowest vintage in ∆′ and re-normalize

to maintain a fixed M . This arrival rate matches the average quarterly growth from 1993 to 2003

in computer ownership by U.S. households according to the U.S. Census Current Population Survey

(CPS) Computer Ownership Supplement. The high demand from a mass of consumers with q̃ = q in

each period raises equilibrium prices and, since inducing upgrades becomes less critical for sustained

demand, lowers innovation rates.

We report the model’s fit in Table 1 and the parameter estimates in Table 2. The model fits

the 15 moments reasonably well, despite having only seven parameters. As is typical with structural

econometric models, the data formally reject our model using a J-stat test since the real world is too

complicated for a tractable model to mimic perfectly.

Table 2 provides the structural estimates and their standard errors. All the parameters are

statistically significant given the relatively small asymptotic standard errors. Dividing the estimated

quality coefficient by the price coefficient implies consumers are willing to pay $21 for a δ increase

in log-quality per period, which translates, for example, to $51 for a 20 percent faster CPU to be

used for 16 quarters (δγ(1 − β16)/[(1 − β)α]). Dividing Intel’s fixed effect by the price coefficient

implies upgrading to a new computer is associated with a hassle cost of $48. Dividing ξIntel − ξAMD

by the price coefficient implies consumers are willing to pay $194 for the Intel brand over the AMD

brand. The model needs this strong brand effect to explain the fact that AMD’s share never rises

above 22 percent in the period during which AMD had a faster product. Intel and AMD’s innovation

efficiencies are estimated to be .001 and .0019, respectively, as needed for AMD to occasionally be

the technology leader while investing much less. Intel’s price elasticity for current sales with respect

to an unexpected one-period price change is 2.16, compared to 1.77 for AMD. These elasticities are

lower than the range reported in Prince (2008) for PC purchases, perhaps reflecting the importance

of the CPU to the PC’s performance.
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4.2 Empirical Results

We use the baseline parameter estimates to compare seven industry scenarios in Table 3: (1) AMD-

Intel duopoly, (2) symmetric duopoly, (3) monopoly, (4) symmetric duopoly with no spillovers, (5)

myopic-pricing duopoly, (6) myopic-pricing monopoly, and (7) social planner. Scenario 1 is the

baseline model using all the estimates in column 1 of Table 2. Scenario 2 modifies the model by

using Intel’s firm-specific values for both firms since AMD’s low ξ hampers its ability to compete.

Scenario 3 uses Intel’s parameters for the monopolist. Scenario 4 illustrates the effect of innovation

spillovers. Scenarios 5 and 6 highlight the importance of accounting for the dynamic nature of

demand by computing equilibrium when firms price myopically by solving ∂πj(p,q,∆)
∂pj

= 0 instead of

the dynamic first-order condition in equation (13). Finally, scenario 7 considers the social planner

who maximizes the sum of discounted profits and discounted consumer surplus. The planner sets

prices and investment for two products, but the outcome is nearly identical to the case of one product

since the planner quickly transitions to states with investment in only the frontier.

For each scenario, we solve for optimal policies and simulate 10,000 industries each for 300 periods,

starting from the initial state in our data. We then analyze the simulated data to characterize

the equilibrium behavior of firms and consumers and to identify observations of interest. Finally,

counterfactual experiments illustrate implications of the model for policy analysis.

Our characterizations of equilibrium behavior in sections 4.2.1 and 4.2.2 instill confidence that the

model yields sensible outcomes. We set apart findings of interest as “observations” in section 4.2.3.

4.2.1 Firm Behavior in Equilibrium

Figure 2 presents value functions, pricing, innovation, market shares, and period profits for the

monopoly and the symmetric duopoly at select states. Figure 3 presents these equilibrium outcomes

for the same monopoly and for the symmetric duopoly without spillovers. We evaluate the duopoly

without spillovers as a theoretical exercise to illustrate the properties of the model. We suspect most

industries exhibit some degree of innovation spillovers and explore further the effect of spillovers in

section 5.

We present the symmetric duopoly case, for which leader-laggard policy differences reflect only

quality differences (not different firm-specific parameters). In both figures, the x-axis in the first two

columns of plots is the ownership distribution state variable ∆̄. Demand is high when consumers’

average quality ∆̄ is low. Accordingly, value functions and prices both decline as ∆̄ increases for the

monopolist (in column 1) and the duopolists (in column 2). In the second column, outcomes are

separately presented for the leader and laggard when their qualities differ by 4δ and for the firms

when they are tied. As expected, values, prices, and market shares are highest for the leader and

lowest for the laggard, with the tied firms in between.

In the third column of both figures, we fix ∆ at its most frequent value in simulations of the
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symmetric duopoly with spillovers and vary the leader’s quality advantage on the x-axis. The laggard

is 8δ behind at the leftmost value and tied for the lead at the rightmost value. Accordingly, the

leader’s value function, prices, and shares decline as its advantage shrinks, whereas the laggard’s

value, prices, and shares increase as it catches up to the leader.

The value functions, prices, market shares, and period profits match our intuition. The outcome of

greatest interest is the innovation rate. As the ownership distribution becomes newer, the monopolist

slightly increases innovation, whereas the duopolists slightly decrease innovation, both with and

without the spillover. In the duopoly, returns to investment are driven more by business stealing

than by the building of future demand. The business-stealing motive is greater for duopolists when

consumers are primed to upgrade, as indicated by a low ∆.

Innovation by the 4δ leader and tied firms are much higher in Figure 3 without spillovers than

in Figure 2 with spillovers. The reason is that without spillovers, the laggard struggles to catch up

and indeed gives up completely once he falls behind by 7δ. Equilibrium is thus characterized by high

innovation initially as firms battle to be the reigning leader, after which innovation drops to zero for

the laggard and below .5 for the leader. The innovation plot in the last column of Figure 3 depicts

this storyline. Without spillovers, the leader increases innovation as the laggard gains, peaking when

the laggard is δ behind. With spillovers, the leader decreases innovation as the laggard catches up

and firms take turns being leaders. Losing the current battle does not permanently lower profits

when spillovers enable a return to leadership, which reduces the incentive to fight. With spillovers,

the difference in value functions between the leader and laggard is $75 billion, compared to over $300

billion without spillovers, despite the similar differences in period profits reported in the bottom row

of each figure.

The differences in innovation policies with and without spillovers yield dramatically different

distributions of states visited, as depicted by the histograms in the top rows of figures 2 and 3.

Without spillovers, the firms tend to be at their maximal degree of differentiation; with spillovers,

they tend to be tied or off by one step. The ownership distributions encountered also differ: consumers

tend to own older vintages without spillovers since they upgrade less often in response to the leader’s

higher prices (given its large quality advantage).

The change in period profits when a firm’s relative quality changes by one step—the x-axis in the

bottom-right panel—represents the immediate impact of innovation on a firm’s net cash flow. The

substantial difference in innovation with and without spillovers, despite the similar immediate effect

on profits, suggests innovation is driven primarily by long-run considerations.

4.2.2 Consumer Behavior in Equilibrium

In Figure 4 we plot the choice probabilities at each ownership vintage, averaged across states encoun-

tered in the AMD-Intel duopoly. The lower a consumer’s vintage relative to the frontier, the more

likely she is to upgrade. As reported in Table 3, when consumers upgrade in the AMD-Intel duopoly,
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the average improvement in quality is 261 percent, compared to 410 percent in the monopoly.

As consumers implement their policy functions, they generate a sequence of ownership distribu-

tions across time. Figure 5 depicts the average ownership distributions for the AMD-Intel duopoly

and the monopoly. Because monopolists charge higher prices, consumers are less likely to upgrade

from a given vintage to the frontier in the monopoly case. In addition, consumers in the duopoly

usually have an option to upgrade to a non-frontier product. Both of these forces cause the ownership

distribution to be older in the monopoly. Figure 5 also suggests that consumers rarely reach the low-

est vintage. Indeed, for the oldest distribution encountered in the simulations, only .00001 percent

of consumers are at the lowest vintage, which ensures the lower bound has no effect on equilibrium

behavior.

4.2.3 Observations Specific to the Microprocessor Industry

Having established the sensibility of consumers’ and firms’ policy functions, we now compare the

estimated model with counterfactual models of the microprocessor industry. Here we evaluate the

model and counterfactuals at the parameter estimates, whereas in section 5 we present comparative

statics to more broadly assess the model’s implications for the effect of competition on outcomes

across industries characterized by different consumer preferences, depreciation rates, and innovation

spillovers.

We first assess the importance of accounting for the dynamic nature of demand by comparing

outcomes when Intel and AMD price myopically by solving ∂πj(p,q,∆)
∂pj

= 0 instead of the dynamic

first-order condition in equation (13).

Observation 1. Margins, defined as (p − mc)/mc, profits, and innovation rates are significantly

higher when firms correctly account for demand being dynamic. The differences are larger for

monopoly than duopoly.

In Table 3 monopoly profits are 76 percent higher and margins are 156 percent higher when the

monopolist accounts for the dynamic nature of demand (scenario 3), compared to myopic pricing

(scenario 6). Industry profits for the AMD-Intel duopoly (scenario 1) are 28 percent higher and

margins are 58 percent higher when firms account for the dynamic nature of demand, compared to

myopic pricing (scenario 5). These higher margins induce firms to innovate more rapidly: the duopoly

innovation rate is 34 percent higher with optimal (dynamic) pricing and the monopoly innovation

rate is 42 percent higher.

Accounting for dynamic demand is more important for the monopolist because competition

is solely with itself, whereas the duopolists are primarily concerned with each other. Moreover,

duopolists are less concerned about the effect of current pricing on future demand since future de-

mand is a shared resource.
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This result highlights the importance of accounting for dynamic demand when analyzing the

pricing of durable goods. Standard practice in the empirical industrial organization and marketing

literatures is to observe prices and use first-order conditions from a static profit maximization to infer

marginal costs. Observation 1 suggests marginal cost estimates computed in this manner for durable

goods will be too high. Prices are high, in part, because firms want to preserve future demand, not

only because marginal costs are high. Since the incentive to preserve future demand is increasing in

market concentration, this over-estimation of costs will be greatest for concentrated markets.

In the next three observations, we compare market outcomes under alternative market structures

for the microprocessor industry. The monopoly counterfactual corresponds to a world in which AMD

never existed, not a world in which Intel merges with AMD, since no such merger would ever be

pursued. As such, the monopolist sells and invests in one product, not two.

Observation 2. Regarding the effect of competition on innovation in the CPU industry, we find

i. The rate of innovation in product quality is 4.2 percent higher with a monopoly than with the

AMD-Intel duopoly. The difference is more pronounced when comparing the monopoly to a

symmetric duopoly pitting Intel against another Intel, with or without spillovers.

ii. Equilibrium investments for monopoly and duopoly market structures are below the socially

optimal levels chosen by the planner.

iii. In the counterfactuals with firms pricing myopically, the AMD-Intel duopoly innovates more

than monopoly.

The average industry investment levels, reported in millions of dollars in Table 3, for the duopoly,

monopoly, and social planner are, respectively, $830 million, $1,672 million, and $6,672 million per

period. The resulting innovation rate for the industry’s frontier product is 0.599 for the duopoly,

0.624 for the monopoly, and 0.869 for the planner. The symmetric duopoly’s innovation rate is

only 0.501 because the intense price competition when Intel faces a copy of itself reduces investment

returns.

The finding that innovation by a monopoly exceeds that of a duopoly reflects two features of

the model: the monopoly must innovate to induce consumers to upgrade, and the monopoly is

able to extract much of the potential surplus from these upgrades because of its substantial pricing

power. If competition with itself were reduced by a steady flow of new consumers into the market,

the monopoly would reduce innovation below that of the duopoly. We illustrate this result with a

comparative static in the next section.

Observation 2.iii illustrates the importance of correctly accounting for durability when evaluat-

ing incentives to innovate, since the effect of competition on innovation is reversed when firms (or

researchers) do not account for the dynamic nature of demand for durable goods.
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The absence of technology spillovers in the monopoly is a potential factor in the monopolist’s

higher innovation compared to a duopoly in which firms mimic, to some degree, each other’s inno-

vations. As we report in Table 3, the innovation rate in the symmetric duopoly with no spillovers

(scenario 5) is actually lower than the innovation rate in the symmetric duopoly with spillovers (sce-

nario 3). The direct effect of removing the spillover is to increase the incentive to innovate since

innovations cannot be copied. The direct effect, however, is dominated by the equilibrium effect of

one firm eventually dominating the industry, as evidenced by the innovation policies and histogram

of q difference in Figure 3. The absence of a threat from the weak laggard, who eventually gives up

and stops innovating, induces the leader to reduce investment. The presence of the laggard nonethe-

less keeps margins lower than in the monopoly. Thus, market power, not an absence of spillovers,

provides the incentive for rapid innovation by the monopolist, compared to the duopolist. In the

next section, we consider spillovers of varying degrees between the estimated level and no spillover.

Importantly, our model yields higher innovation with competition when evaluated using different

values for price and quality preferences. As such, our model indeed lets the data speak on this

fundamental question. In the next section, we present comparative statics to show that competition

fosters higher innovation when consumers highly value quality and are relatively insensitive to price.

Of course, policymakers are more concerned with surplus and profits than with innovation per

se. We compute firms’ profits as the discounted sum of per-period profits and consumer surplus

directly from the value functions: CS = M
α

∑q̄t
q̃=qt

V̄ (q0,∆0, q̃)·∆q̃,0. We acknowledge that measuring

consumer surplus for a product that has transformed our world on so many levels is an almost futile

effort. As such, we focus on differences in surplus across scenarios rather than levels.

Observation 3. Regarding the effect of competition on surplus, we find

i. The AMD-Intel duopoly generates 4.2 percent more consumer surplus than the monopoly.

ii. The AMD-Intel duopoly generates 1 percent less social surplus than the monopoly. The duopoly

and monopoly generate 92.9 and 94 percent, respectively, of the planner’s social surplus.

iii. Consumers’ share of social surplus is 88 percent in the AMD-Intel duopoly, compared to 83.4

percent in the monopoly.

Table 3 reports the aggregate discounted CS and industry profits for each of the scenarios we

consider.22 The AMD-Intel duopoly CS of $2.98 trillion corresponds to $298 billion per year, using

an annual discount factor of .9. Although both the AMD-Intel and symmetric duopolies generate

more CS than the monopoly, higher industry profits enable the monopolist to generate more social

surplus than the duopolies.
22The compounding effect of the monopoly’s higher innovation rates implies the consumer surplus gain in duopoly

relative to monopoly is larger the shorter the time horizon. Using the 48-quarter horizon of our data, the gain in CS
when moving from the monopoly to the AMD-Intel duopoly is 7.1%, instead of 4.2% using 300 quarters.
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As noted in observation 3.iii, CS comprises more than 83 percent of social surplus whether the

industry is a monopoly or duopoly. Moreover, consumers are the primary benefactors of innovation

opportunities, regardless of market structure, as evidenced by comparisons with (unreported) coun-

terfactuals in which firms are barred from innovation. Monopoly profits are 2.6 percent higher with

innovation than without innovation, whereas CS in the monopoly is 64.2 percent higher with inno-

vation. Duopoly profits are actually 13 percent lower with innovation, whereas CS in the duopoly is

65.7 percent higher with innovation.

To put the 4.2 percent CS gain due to competition from AMD in perspective, the CS gain from

an increase in frontier quality by one δ-step is $55.4 billion.23 The $121 billion higher CS under

duopoly, compared to monopoly, therefore equals the CS gain from 2.2 innovations, which is roughly

one year’s worth of innovations (under either monopoly or duopoly). Again, we see that the difference

in CS between duopoly and monopoly are small relative to the overall gains from innovation.

Recently Intel paid AMD $1.25 billion to settle claims that Intel’s anti-competitive practices

foreclosed AMD from many consumers. To study the effect of such practices on innovation and

pricing, and ultimately consumer surplus and firms’ profits, we perform a series of counterfactual

simulations in which we vary the portion of the market to which Intel has exclusive access. Let ζ

denote this portion. Period profits for j = Intel are then

π̂j(p, q,∆) = M [ζŝj(pj , qj ,∆) + (1− ζ)sj(p, q,∆)] (pj −mcj(q)), (19)

where ŝj(pj , qj ,∆) is Intel’s market share in the sub-market in which it competes only with the

outside good (i.e., ∆). We assume Intel sets the same price in each sub-market and consumers are

randomly assigned to each market each period.

Observation 4. As AMD is excluded from an increasing portion of the market,

i. margins monotonically rise and innovation exhibits an inverted-U with a peak at ζ = .5,

ii. consumer surplus rises initially, peaking at ζ = .4, then declines, eventually falling below the

consumer surplus with no foreclosure.

In Figure 6 we plot margins, innovation rates, consumer surplus, and social surplus when the

foreclosed portion of the market varies from zero to one. Not surprisingly, share-weighted margins

rise monotonically as AMD is increasingly barred from the market. Industry innovation peaks at 4.8

percent higher than the estimated AMD-Intel duopoly innovation rate when AMD is barred from half

the market, but then drifts down to the 4.2 percent higher innovation of the monopoly. Consumer

surplus is actually higher when AMD is barred from a portion of the market, peaking at 40 percent
23We evaluate the gain in CS from Intel advancing when AMD is two steps behind and ∆ is at its most common value.

The gains are less than the upper-bound Mδγ/(α(1− β)) =$61.5 billion since not all consumers upgrade immediately
to the improved product. The gain converges to $61.5 billion as the ∆ distribution shifts to older vintages.
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foreclosure. Although the CS gains are small, this finding highlights the importance of accounting

for innovation in antitrust policy: the decrease in consumer surplus from higher prices can be more

than offset by the compounding effects of higher innovation rates.

5 Comparative Statics

We present comparative statics in preferences for price and quality, depreciation of the good’s quality,

the magnitude of innovation spillovers, and product substitutability. In addition to being of interest

themselves as characterizations of outcomes for a wide array of durable-goods markets, these results

assess the robustness of our earlier findings specific to the microprocessor industry. We also relate

our findings to Aghion et al. (2005).

5.1 Comparative Static in Consumer Preferences

Our primary empirical result is that Intel would innovate more if it were not competing against AMD.

We now illustrate in Figure 7 that the relationship between competition and innovation hinges on

consumer preferences, which is consistent with Dorfman and Steiner (1954) and Lee (2005) who find

that price and quality preferences primarily determine R&D intensity.

Observation 5. Comparative statics in the quality and price coefficients, γ and α, reveal

i. Innovation is increasing in γ and decreasing in α for both monopoly and duopoly.

ii. The effect of competition on innovation is increasing in γ and decreasing in α, except where

both γ is low and α is high, as Figure 7 depicts.

iii. Innovation is higher for the duopoly than the monopoly when γ is high and α is low.

iv. Consumer surplus is higher for the monopoly than the duopoly when γ is low and α is high.

This result illustrates again that higher innovation in the monopoly can more than offset higher

prices, yielding higher consumer surplus than obtained in the duopoly.

We first note that our estimates of .2764 and .0131 for γ and α in the microprocessor industry

are far from the region of preferences for which competition increases innovation.

Part (i) is intuitive: firms innovate faster when consumers are willing to pay more for quality,

either due to a higher coefficient on quality or a lower coefficient on price. We plot these monotonic

relationships in the top two panels of Figure 7 for the duopoly and monopoly, respectively.

Part (ii) is less obvious. The higher slope of the duopoly in the top panel relative to the monopoly

in the second panel implies the duopoly eventually innovates more than the monopoly as γ increases

and α falls, both of which increase consumers’ willingness to pay for quality. But why is duopoly

innovation more sensitive to preferences than is monopoly innovation? To gain insight, first express
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average industry innovation in the duopoly as a weighted average:

Pr(q1t = q2t) E
[
1− (1− χj(τ1 = 1|x∗1t(qt,∆t)))2

]
+

δf∑
k=1

Pr(q2t = q1t − k) E [χj(τ1 = 1|x∗1t(qt,∆t)] ,

(20)

where E integrates over ∆, Pr(·) are probability weights, and firms are ordered within each period

such that q1t is the frontier quality. The first term reflects the mechanical benefit of having two

firms: when firms are tied, innovation by either firm advances the frontier. By comparison, the

average monopoly innovation rate is E [χj(τ1 = 1|x∗1t(∆t))]. Differentiating these innovation rates

with respect to γ (or similarly α) reveals that two factors contribute to innovation being more

sensitive to preferences in the duopoly than in the monopoly: the effect of γ on firms’ investment

policies x∗(·) and on which states are encountered (i.e., the probability weights). As detailed in

Appendix D, both channels lead to the duopoly increasing innovation faster than the monopoly

as γ increases (or, similarly, as α decreases). Hence, innovation in the duopoly eventually exceeds

innovation in the monopoly as consumers are willing to pay more for quality.

5.2 Comparative Static in Depreciation

Although quality does not depreciate in our empirical application to microprocessors, augmenting

the model to accommodate depreciation is easy, as detailed in Appendix E. Figure 8 presents a

comparative static relating depreciation and innovation.24

Observation 6. As depreciation increases:

i. Innovation declines faster in the duopoly than in the monopoly.

ii. Margins increase faster in the monopoly than in the duopoly.

iii. Consumer surplus declines faster in the monopoly than in the duopoly.

iv. Discounted profits increase faster in the monopoly than in the duopoly.

Two forces affect equilibrium behavior when depreciation increases. First, the ownership distri-

bution ages more quickly, which reduces the need for firms to innovate to induce upgrade purchases.

Second, consumers expect to use each purchase over fewer periods (since they upgrade more quickly),

which reduces the discounted utility derived from each purchase. These forces have opposing effects

on prices, with the latter effect shifting the pricing policy function lower and the former effect lowering

the ∆ values at which we evaluate the policy function. The higher prices from lowering ∆ dominates
24The highest depreciation rate we consider in Figure 8 is a 20 percent reduction (one δ-step) per quarter. Since we

assume the outside good’s quality is within δ̄c of the frontier, a monopolist selling a good with 100 percent depreciation
each period (i.e., a nondurable) will stop innovating upon reaching this bound. Clearly, with nondurables, the bound
can affect equilibrium strategies, as discussed in Goettler and Gordon (2011).
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the shift in the pricing policy function, causing a moderate net increase in prices as depreciation

increases. The margins plotted in Figure 8 reflect this rise.

In both the monopoly and duopoly, discounted lifetime profits increase by greater proportions

than the margins increase since firms sell more units and investment costs decline. Consumer surplus

falls in both the monopoly and duopoly, since consumers pay higher prices for goods that are less

durable and of lower quality (since innovation declines). The faster decline of consumer surplus in

the monopoly implies the surplus gain from competition is increasing in the depreciation rate. Since

depreciation reduces durability, this result demonstrates the role of durability in limiting welfare

losses from market power.

One might expect duopoly innovation to decline by less than monopoly innovation as deprecia-

tion increases, since the monopolist faces competition only from the durability of its own products,

whereas duopolists face competition from past units sold as well as each others’ current offerings.

The difference in discounted utility derived from competing offerings that differ in quality by one

step, however, shrinks as the unit’s expected time in use declines due to depreciation. This lower

difference implies a reduced competitive gain from innovation, which reduces the business-stealing

incentive to innovate in the duopoly.

5.3 Comparative Static in the Market Growth Rate

Observation 7. As M grows due to entry by new consumers, innovation increases in the duopoly

and does so at a faster rate than in the monopoly.

We present the market growth comparative static in two steps since computing the equilibrium

when the market grows each period is computationally impractical due to the resulting nonstation-

arity (see section 4.1.3). In the top panel of Figure 9, we increase the proportion of consumers who

enter the market each period with q̃ = q, while re-normalizing market size to keep M fixed. This

reallocation of consumers to q reduces competition from past sales (i.e., ∆) in both monopoly and

duopoly. Since competition from past sales is the monopolist’s only competition, innovation in the

monopoly decreases. Duopolists, on the other hand, are primarily concerned with competition from

each other since their qualities tend to be closer to each other than to consumers’ vintages. Accord-

ingly, duopolists increase innovation in response to the increased demand from the reallocation.

In the lower panel, we present the comparative static for equilibrium innovation as M increases.

Innovation increases faster in the duopoly than in the monopoly. Combining the two effects, innova-

tion increases in the duopoly as M grows due to entry by new consumers, and does so at a faster rate

than in the monopoly. Since the two components of market growth by entry of new consumers have

opposing effects on monopoly innovation, the sign of the net effect in the monopoly is not obvious.

Regardless, for sufficiently high market growth due to entry by new consumers, innovation is higher
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in the duopoly than in the monopoly.

Increasing the market growth rate is similar to increasing depreciation in that both cause the

ownership distribution to age faster. Increasing the market growth rate, however, does not lower the

expected utility derived over each purchase’s useful life, as occurs with increased depreciation. The

competitive gain from innovation, due to consumers deriving higher utility over many periods when

purchasing the better of two products, is therefore not lowered by market growth.

5.4 Comparative Static in the Innovation Spillover

To investigate further the effect of spillovers, initially noted in our discussion of the policy plots

in figures 2 and 3, we present, in Figure 10, symmetric-duopoly outcomes when the spillover effect

varies from its estimated value (in the AMD-Intel duopoly) to no spillover.

Observation 8. As the spillover declines from its estimated value to zero,

i. Innovation, consumer surplus, and social surplus steadily rise until the spillover is sufficiently

small that a severely lagging firm concedes the market by ceasing to innovate.25 At this point,

innovation plunges and both surplus measures decline.

ii. Margins and the difference in firms’ qualities increase gradually at first and then sharply when

the spillover is sufficiently small that the laggard concedes the market by ceasing to innovate.

iii. For moderate spillovers (30 to 40 percent of the estimated spillover), the duopoly has innovation,

consumer surplus, and social surplus exceeding those in the monopoly.

One might expect the surplus measures with no spillover to be lower than with the estimated

spillover (of a1 = 3.94) since margins are 43 percent higher and innovation is 13 percent lower with

no spillover. However, these measures are averages over the 300 periods simulated for each of the

10,000 simulated industries, and the no-spillover duopoly is initially a fierce battle for supremacy.

During this initial period, innovation is extremely high and margins are relatively low, since the firms

have similar qualities. Hence the early periods, which receive greater weight in the discounted sum

of utility flows, deliver substantial discounted surplus. That is, the surplus is heavily front-loaded in

the no-spillover industry.

For comparison, the monopolist’s values relative to the estimated-spillover symmetric duopoly are

2.34 for margins, .949 for consumer surplus, 1.004 for social surplus, and 1.246 for innovation. The

peak duopoly innovation rate, when a1 is 40 percent of the estimated spillover, exceeds innovation in

the monopoly by 11.2 percent. Consumer surplus and social surplus are maximized by the duopoly

with 35 percent of the estimated spillover, yielding surplus gains relative to the monopolist of 20

percent and 10 percent, respectively.
25Although the laggard ceases to innovate, it remains in the industry at the maximum quality disadvantage δ̄f . The

laggard’s presence restricts the leader’s market power, thereby reducing its innovation below that of a monopolist.
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Scott (1984) and Levin et al. (1985) find that differences in technological opportunity and ap-

propriability conditions explain much of the variation in R&D intensity across industries. Since

innovation spillovers reduce a firm’s ability to appropriate profits from its innovations, Observation 8

supports their finding.

The inverted-U relationship between spillovers and innovation, combined with the monotonic

relationship between spillovers and margins, implies an inverted-U relationship between margins and

innovation. Thus innovation spillovers may be added to the list of possible structural causes for the

inverted-U relationship between margins and innovation identified by Aghion et al. (2005).

5.5 Comparative Static in Product Substitutability

Product substitutability is governed by the variance of the idiosyncratic utility shock ε. As 1/var(ε)

approaches zero, firms enjoy local monopolies with no product substitutability. As 1/var(ε) ap-

proaches infinity, products become perfect substitutes and the market eventually yields a “winner-

take-all” outcome. Figure 11 depicts market outcomes as we vary product substitutability.

Observation 9. Regarding the effect of product substitutability on innovation, we find

ii. Innovation in the monopoly exhibits an inverted-U as substitutability increases.

i. Innovation in the duopoly increases as substitutability increases, until var(ε) becomes too small

for firms with similar qualities to coexist. Beyond this “shakeout” threshold, the laggard even-

tually concedes the market as evidenced by the sharp increase in the quality difference.

iii. Duopoly innovation is higher than monopoly innovation when substitutability is near the shake-

out threshold.

Vives (2008) concludes that duopolists facing logit demand increase product innovation when

substitutability increases, which matches Observation 9.i until the shakeout threshold is reached.

Vives (2008) also shows R&D on cost-reducing technologies is unaffected by product substitutability

in the logit model for nondurable goods.

5.6 Relating to Aghion et al. (2005)

In the model of Aghion et al. (2005), a monopolist would never innovate. As such, Aghion et al. (2005)

vary competition not by the number of firms, but by the degree to which duopolists collude when tied.

As competition increases, due to less collusion, a firm with inferior technology decreases investment

and firms at the same technology level increase investment. The former is the Schumpeterian effect

since the lower profits in the tied state reduce the laggard’s incentive to innovate, whereas the latter

effect is the “escape-the-competition” effect since each tied firm increases investment as the profit

gap widens between a tied firm and a leader firm. When competition is low, the industry spends
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more time in the tied state since the laggard innovates rapidly, leading to a tied state, and tied firms

innovate slowly. Consequently, the escape-the-competition effect dominates when competition is low,

which causes an increase in competition to increase average industry innovation over time. When

competition is high, the industry tends to be in the unlevel state, leading the Schumpeterian effect

on laggard’s innovation to reduce average industry innovation when competition increases further.

Our model with durable goods differs from the nondurable-goods model of Aghion et al. (2005) in

several ways. Their firms’ technology levels differ by at most one innovation step, whereas our firms

can differ by multiple steps. Industry profits in their model depend only on technology differences,

which implies a firm with a quality advantage will never innovate. A leader in our model, however,

innovates to increase its quality advantage, relative to both its competitor and to the stock of used

durables.

To better relate to Aghion et al. (2005), we transform our model to use nondurable goods and

consider a measure of competition more similar to their ability-to-collude measure: product substi-

tutability as measured by the variance of the idiosyncratic utility shock ε.26 More intense competition

via greater product substitutability (i.e., lower variance of ε) raises the profit gain when a tied firm

becomes a leader, and reduces the profit gain when a laggard becomes tied for the lead. This pat-

tern matches the effect of increased competition via less collusion. As illustrated in Figure 12, this

nondurable version of our model yields Proposition 1 of Aghion et al. (2005), which states that inno-

vation by the laggard decreases with greater competition, and innovation by the tied (neck-in-neck)

firms increases. The declining share of periods in which firms are tied also matches their Proposi-

tion 4, which states that the expected technological gap between firms increases with competition.

Our nondurable model, however, does not generate the inverted-U of their Proposition 2, since the

leader in our model innovates faster as competition increases, whereas the leader in their model never

innovates.

We apply this same measure of competition to our durable goods model and find that their

Proposition 1 no longer holds: both the laggard and tied firms increase innovation when product

market competition increases. In short, we show that their Proposition 1 depends on whether the

good is durable and their Proposition 4 depends on whether the leader invests.

6 Conclusion

In this paper, we estimate a dynamic model of durable goods oligopoly with endogenous innovation

and use it to assess the effect of competition on innovation in the PC microprocessor industry.

Consumers are better off under a duopoly due to lower margins: consumer surplus is higher with
26In the nondurable model, consumers are myopic and there is no ownership distribution. We also assume no outside

good is available since constant industry revenue in Aghion et al. (2005) implies firms essentially compete only within
an industry. For Figure 12, firms differ by no more than one quality step, though the results are qualitatively the same
when greater differences are allowed.
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AMD competing against Intel than without AMD. However, in support of Schumpeter’s hypothesis,

industry innovation is higher with Intel as a monopolist.

Two forces drive innovation: competition between firms for the technological frontier and compe-

tition with the installed base to induce consumers to upgrade. Duopolists face both forces, whereas a

monopolist only faces the latter. This latter effect highlights the importance of product durability, as

the absence of depreciation necessitates innovation to induce upgrades. Another important distinc-

tion in durable goods markets is between replacement and first-time purchases. Market growth—the

addition of potential first-time purchasers—can mitigate competition with the installed base. Rapid

market growth reduces the innovation incentives for a monopolist who can exploit demand from

first-time buyers, leading the duopoly to innovate faster than the monopolist. Our finding that Intel

would innovate more rapidly as a monopolist could therefore be reversed if markets for microproces-

sors grew more rapidly.

Extending our model to allow for endogenous product durability, as in Rust (1986) for a monop-

olist, would be interesting. The monotonic increase in duopoly profits as depreciation exogenously

increases in Observation 6, combined with the observed near-perfect durability of microprocessors,

suggests a prisoner’s dilemma: firms would like the industry to sell less durable goods, but they

cannot commit to doing so.

One of our goals is to demonstrate the value of structural empirical methods to investigate the

effect of competition on innovation. We hope future work will adopt this approach to examine other

industries in depth to complement insights from cross-sectional studies of this important issue.

Appendix A: Solving and Simulating Industry Equilibrium

Besanko et al. (2010) and Borkovsky, Doraszelski, and Kryukov (2010) document the existence of multiple
equilibria in dynamic oligopoly models based on Ericson and Pakes (1995). To reduce multiplicity, we focus
on equilibria that are limits to finitely repeated games: we use backwards induction to solve for an equilibrium
of the T -period game and then let T → ∞. For each T and for each state, we solve the system of first-order
conditions in equations (13) and (14). Our numerical algorithm for computing equilibrium to the infinite
horizon game therefore corresponds to value function iteration with (a) initial values of V̄ 0 = 0 and W 0 = 0
and (b) equilibrium strategies being played within each state for each iteration, as opposed to merely playing
best responses to strategies from the previous iteration.

Given χj(τj = 1|x, q) = aj(q)x/(1 + aj(q)x), we can simplify the investment first-order condition in
equation (14) to

xj −
(

aj(q)
1− (βaj(q)(EW+(pj)− EW−(pj)))−1/2

− aj(q)
)−1

= 0, (21)

where

EW+(pj) =
∑
q′−j ,∆

′

Wj(qj + δ, q′−j ,∆
′) hfj (q′−j |q,∆) gfj (∆′|∆, q, p)
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and

EW−(pj) =
∑
q′−j ,∆

′

Wj(qj + 0, q′−j ,∆
′) hfj

(q′−j |q,∆) gfj
(∆′|∆, q, p)

are the expected continuation values conditional on positive and negative innovation outcomes, respectively.
The dependence of these expectations on pj is through the effect of price on the ownership transition to ∆′.

For each iteration k = 1, 2, . . ., we follow these steps:

1. Simultaneously solve firms’ first-order conditions in equations (13) and (21) for {p∗j , x∗j}Jj=1 at each state
given continuation values determined by W k−1 and V̄ k−1 for firms and consumers, respectively. Since
the FOC depend on consumers’ current choices which in turn depend on their rational expectations of
∆′, for each conjectured {pj , xj}Jj=1 we solve for the fixed point in ∆′ such that consumers’ expectations
for ∆′ are realized (i.e., equation (8) in footnote 17 is satisfied). Denote ∆′∗ this fixed point when firms
play {p∗j , x∗j}Jj=1.

2. Let W k equal the discounted payoffs given firms’ current policies {p∗j , x∗j}Jj=1, continuation ownership
distribution ∆′∗, and continuation values based on W k−1.

3. For each consumer state, which adds ω̃ to the industry state vector, evaluate the consumer’s smoothed
value function V̄ k given firms’ current policies {p∗j , x∗j}Jj=1, continuation ownership of ∆′∗, and contin-
uation values based on V̄ k−1.

4. Check for convergence in the sup norms of |V̄ k − V̄ k−1| and |W k −W k−1| with a tolerance of 1e-10. If
convergence is not achieved, return to step (1).

To simulate the converged model, we first specify an initial state for the industry (ω0,∆0). In our first
quarter, AMD is 1.7 δ-steps behind Intel. Hence we start 70 percent of the simulations with AMD two steps
behind Intel and 30 percent with AMD one step behind. Then for each simulated period t = 0, . . . , T , we
implement each firm’s optimal price and investment according to the equilibrium policy functions, process the
evolution of ownership given consumers’ equilibrium choice probabilities, and process the stochastic innovation
outcomes according to χj(·|·).

A challenge in solving our model is that ∆ is a high-dimensional simplex. We approximate this continuous
state variable with a discretization that restricts ∆ ∈ {∆d}Dd=1. Let ρd(∆′) denote the distance between the
exact continuation ∆′, as implied by equations in Footnote 17, and the dth distribution of our discretization.
Several candidate distance metrics are available: the Kullback-Leibler divergence measure, sum of squared
errors of PDFs or CDFs, and the mean, among others. Since we are using the approximation to obtain firms’
and consumers’ continuation values, the distance metric should be based on moments of the distribution most
relevant to future profitability, pricing, and investment. For logit demand systems the mean is the most
relevant moment. Fixing consumers’ conditional choice probabilities and firms’ relative qualities, we generate
random ownership distributions and regress the resulting profits on moments of the random ∆s. The mean is
easily the best predictor of a ∆’s profitability, with an R2 of .995. We therefore define

ρd(∆′t+1) =

∣∣∣∣∣∑
k

k∆′k,t+1 −
∑
k

k∆d
k

∣∣∣∣∣ , for all d ∈ (1, . . . , D), (22)

where the summation is over the discrete qualities from q to q̄ tracked by ∆.
We generate {∆d}Dd=1 using a distribution parameterized by a scalar and choose the scalar’s discrete grid

such that mean qualities are .25 apart and range from 9 to 29, relative to q̄ fixed at 30. We use the logit,
which has CDF for the kth quality level of z exp(qk)/(1 + z exp(qk))κ, where z is the scalar parameter and
κ = z exp(q̄)/(1 + z exp(q̄)) is a normalization constant.

In computing equilibrium, we use a cubic spline to interpolate between ∆ grid points since solving the
firms’ first-order conditions requires differentiable continuation values. When simulating the model, rather
than interpolating policy functions, we force ∆ to remain on the grid by randomizing ∆t+1 to be one of
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the two closest ∆d, with probabilities proportional to the distances between these closest ∆d and the exact
continuation ∆.

Appendix B: Transforming to a Relative State-Space

Proof of Proposition 1 : We prove the proposition for the case of a finite horizon, using backwards induction,
since this approach enables us to impose rational expectations regarding future outcomes.

Consider the finite game with T periods in which a consumer starting at state (q1,∆1, q̃1, ε1) maximizes
expected discounted utility

V T (q1,∆1, q̃1, ε1) = max
{yt(qt,∆t,q̃t,εt)∈(0,1,...,J)}T

t=1

E

[
T∑
t=1

βt (γqyt,t − αpyt,t + ξyt
+ εyt,t)

]
, (23)

where q0,t = q̃t and p0,t = 0 in each period, yt(qt,∆t, q̃t, εt) is the consumer’s policy function, and the
expectation is taken with respect to information available at time t. In this game each firm j maximizes
expected discounted net profits

WT
j (qj1, q−j,1,∆1) = max

{pjt(qt,∆t), xt(qt,∆t)}T
t=1

E

[
T∑
t=1

βt (Msjt(pt, qt,∆t)(pjt −mcj)− xjt)
]
, (24)

where M is market size, sjt(·) is the market share for firm j as defined in equation (7), pt is the vector of J
prices, xjt is investment by firm j, and mcj is firm j’s constant marginal cost of production.

In period T firms and consumers play a standard static differentiated-products game given the state of
the industry as described by (qT ,∆T ). Since consumers’ utility functions are linear in the quality index,
consumers’ choices are insensitive to shifts in all qualities (qt and q̃) by some constant q̂. The market share
function therefore satisfies sjt(pt, qt,∆t) = sjt(pt, qt − q̂,∆t), which implies firms’ prices are insensitive to
shifts in all qualities. The period T value functions V T and WT therefore satisfy

Firms: WT
j (qjt, q−j,t,∆t) = WT

j (qjt − q̂, q−j,t − q̂,∆t)
Consumers: V T (qt,∆t, q̃t, εt) = γq̂ + V T (qt − q̂,∆t, q̃t − q̂, εt) . (25)

Note that each consumer’s utility shifts by γq̂ when all qualities shift by q̂.
Now consider equilibrium outcomes in period T −1 taking as given the period T equilibrium payoffs. Each

consumer solves

V T−1(qT−1,∆T−1, q̃T−1, εT−1) = max
y∈(0,1,...,J)

γqy,T−1 − αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

V T (qT ,∆T , q̃T , εT ) dFε(εT )

J∏
j=1

χj(qjT − qj,T−1|xj,T−1, qT−1) ,

(26)

where q̃T = max(qy,T−1, q̄T − δc) is the transition of q̃ accounting for the maximum allowed difference between
the frontier product’s quality q̄T and each consumer’s q̃, and the deterministic transition to ∆T is based on
consumers’ choices, as detailed in equation (17). Since each consumer is small relative to M , her actions do
not affect the transition of ∆.

Each firm j solves

WT−1
j (qj,T−1, q−j,T−1,∆T−1) = max

pj,T−1
xj,T−1

Msj,T−1(pT−1, qT−1,∆T−1)(pj,T−1 −mcj)− xj,T−1

+β
∑
qT

WT
j (qj,T , q−j,T ,∆T )

J∏
j=1

χj(qjT − qj,T−1|xj,T−1, qT−1) .
(27)
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In these equations defining V T−1 and WT−1, the products’ future qualities are uncertain. Rational expecta-
tions regarding this uncertainty are achieved by using the firm’s investments in period T − 1 to determine the
distribution of qT . Recall that χj(·|xjt, qt) is the probability distribution of j’s investment outcome, which is
restricted to be either no improvement in quality or improvement by one δ-step.

Now consider these same maximizations at a state with all qualities shifted by q̂:

V T−1(qT−1 − q̂,∆T−1, q̃T−1 − q̂, εT−1) = max
y∈(0,1,...,J)

γ(qy,T−1 − q̂)− αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

V T (qT − q̂,∆T , q̃T − q̂, εT ) dFε(εT )

J∏
j=1

χj(qjT − q̂ − (qj,T−1 − q̂)|xj,T−1, qT−1 − q̂)
(28)

and

WT−1
j (qj,T−1 − q̂, q−j,T−1 − q̂,∆T−1) = max

pj,T−1
xj,T−1

Msj,T−1(pT−1, qT−1 − q̂,∆T−1)(pj,T−1 −mcj)

−xj,T−1 + β
∑
qT

WT
j (qj,T − q̂, q−j,T − q̂,∆T )

J∏
j=1

χj(qjT − q̂ − (qj,T−1 − q̂)|xj,T−1, qT−1 − q̂) .
(29)

Substitute the right-hand sides of (25) into (29) and (28). Then note that χj(qjT−q̂−(qj,T−1−q̂)|xj,T−1, qT−1−
q̂) = χj(qjT − qj,T−1|xj,T−1, qT−1) by algebra and the assumption that the spillover aspect of investment
outcomes depends on quality differences between the investing firm and the frontier product. As such, firms’
investment choices are unaffected by the q̂ shift. Consumers’ and firms’ discounted continuation values are
therefore insensitive to the q̂ shift. Since current flow utility is insensitive to the quality shift (by linearity),
consumers’ period T − 1 choices (i.e., sj,T−1) must be insensitive to the shift, which further implies firms’
T − 1 prices are insensitive to the shift. Implementing these equivalences converts (29) into (27), exactly,
and converts (28) into (26), except for a −(γq̂ + βγq̂) term that does not affect the consumer’s choice. The
modified (28) is

V T−1(qT−1 − q̂,∆T−1, q̃T−1−q̂, εT−1) = max
y∈(0,1,...,J)

γ(qy,T−1 − q̂)− αpy,T−1 + ξy + εy,T−1

+β
∑
qT

∫
εT

(−γq̂ + V T (qT ,∆T , q̃T , εT )
)
dFε(εT )

J∏
j=1

χj(qjT − qj,T−1|xj,T−1, qT−1) .

(30)

By induction, the optimal consumer policies yt(qt,∆t, q̃t, εt) and firm policies pt(qjt, q−jt,∆t) and
xt(qjt, q−jt,∆t) are insensitive to shifts in all qualities for all t. The firm’s value functions W t are also
insensitive to q̂ shifts and the consumers’ value function V t is shifted by γq̂

∑T−t
t′=0 β

t′ .
To complete the proof, choose q̂ = q̄t, the quality of the frontier product in period t.

Appendix C: A Simulated Minimum Distance Estimator

Our presentation of the assumptions and details of our estimator follows Hall and Rust (2003). The model
presented in section 3 generates a stochastic process for µt = {ωt,∆t, pt, xt, st}, where ω denotes qualities
relative to the frontier, ∆ is the ownership distribution, p denotes prices, x denotes investments, and s denotes
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market shares. The transition density, fµ, for this Markov process is given by

fµ(ωt+1,∆t+1, pt+1, xt+1, st+1|ωt,∆t, pt, xt, st, θ) =
J∏
j=1

χj(ωj,t+1 − ωj,t|ωt, xt)
× g(∆t+1|∆t, st)
× I{pt+1 = p(ωt+1,∆t+1)}
× I{xt+1 = x(ωt+1,∆t+1)}
× I{st+1 = s(ωt+1,∆t+1)} ,

(31)

where θ denotes the vector of K parameters to be estimated. Note that fµ is degenerate since prices, invest-
ments, and market shares are deterministic functions of the state variables ωt+1 and ∆t+1. The model would
need to be modified, perhaps by adding aggregate shocks, if we were to use maximum likelihood since the data
would almost surely contain observations having zero likelihood. This degeneracy, however, is not a problem
for the SMD estimator we define below because it is based on predicting moments of the distribution µt, not
particular realizations of µt given µt−1.

For each candidate value of θ encountered, we solve for equilibrium and simulate the model S times for T
periods each, starting at the initial state (ω0,∆0), which we observe in the data. These S×T simulated periods
each have three stochastic outcomes—each firm’s investment outcome and the random transition of ∆t. The
set of i.i.d. U(0,1) draws for these outcomes, denoted

{{Unt }Tt=1

}S
n=1

, is held fixed throughout the estimation
procedure to preserve continuity of the estimator’s objective function. The set of simulated industry outcomes
is denoted

{{µt(θ, Un<t, ω0,∆0)}Tt=1

}S
n=1

, where the subscript in Un<t indicates µnt depends on only the first
t− 1 realizations of Un.

The vector of moments using actual data is denoted mT ≡ m({µactualt }Tt=1) and the simulated moment
vector is the average over the S simulations:

mS,T (θ) =
1
S

S∑
n=1

m
({µt(θ, Un<t, ω0,∆0)}Tt=1

)
, (32)

where the initial state (ω0,∆0) corresponds to the first quarter of our data.
The simulated minimum distance estimator θ̂T is then defined as

θ̂T = argmin
θ∈Θ

(mS,T (θ)−mT )′AT (mS,T (θ)−mT ) , (33)

where AT is an L× L positive definite weight matrix.
We make the following assumptions.

Assumption 1. For any θ ∈ Θ the process {µt(θ, Un<t, ω0,∆0)} is ergodic with unique invariant density
Ψ(µ|θ) given by

Ψ(µ′|θ) =
∫
fµ(µ′|µ, θ)dΨ(µ|θ). (34)

Assumption 2. The structural model presented in section 3 is correctly specified. As such, a θ∗ ∈ Θ exists
for which each simulated sequence {µnt }, n = 1, . . . , S from the initial state (ω0,∆0) has the same probability
distribution as the observed sequence {µt}.

This assumption enables us to use the standard GMM formula for the asymptotic covariance matrix of
θ̂T . We could alternatively relax this assumption and bootstrap the covariance matrix.
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Define the functions E[m|θ], ∇E[m|θ], and ∇mS,T as

E[m|θ] =
∫
m(µ)dΨ(µ|θ)

∇E[m|θ] = ∂
∂θE[m|θ]

∇mS,T = ∂
∂θmS,T (θ).

(35)

Assumption 3. θ∗ is identified; that is, if θ 6= θ∗ then E[m|θ] 6= E[m|θ∗] = E[m({µactualt }Tt=1)]. In addition,
rank(∇E[m|θ]) = K and limT→∞AT = A with probability 1, where A is an L× L positive definite matrix.

The optimal weight matrix is Ω(m, θ∗)−1 ≡ E[(m(µ) − E[m(µ)])(m(µ) − E[m(µ)])′]−1, the inverse of the
covariance matrix of the moment vector, where the expectation is taken with respect to the ergodic distribution
of µ given θ = θ∗. Using AT = [cov({µactualt }Tt=1)]−1 as a consistent estimate of the optimal weight matrix,
the estimator θ̂T has the property

√
T (θ̂T − θ∗) =⇒ N

(
0, (1 + 1/S)

(∇E[m|θ∗]′Ω(m, θ∗)−1∇E[m|θ∗])−1
)
. (36)

We choose S to be sufficiently high (10,000) that simulation error has a negligible effect.

Appendix D: Decomposing the Effect of the Quality Coefficient on Industry In-

novation

As discussed in Observation 5, two factors contribute to innovation being more sensitive to preferences (γ) in
the duopoly than in the monopoly: the effect of γ on firms’ investment policies x∗(·) and on which states are
encountered.

To evaluate the effect of γ on firms’ investment policies, we condition on typical ∆ values for the monopoly
and duopoly and, in Figure 13, plot the effect of γ on firms’ investment levels and innovation rates, the marginal
effect of investment on the probability of an innovation (∂χj(x∗)

∂x ), the marginal effect of γ on investment (∂x
∗

∂γ ),

and the marginal effect of γ on innovation (∂χj(x∗)
∂γ = ∂χj(x∗)

∂x
∂x∗

∂γ ). This last marginal effect, plotted in panel
6, is higher for the leader and for each tied firm than for the monopolist, and is much higher for either tied
firm innovating. Hence changes in innovation policy functions contribute to the industry innovation increasing
more in the duopoly than in the monopoly as γ increases. Interestingly, for low γ, the monopolist’s investment
is more sensitive to γ than duopolists’ investments, but the marginal effect of investment on innovation is
sufficiently higher for the duopolists that the ultimate effect on innovation is greater in the duopoly.

The effect of γ on industry innovation through investment policies x∗(·), however, can potentially be
mitigated by the equilibrium transiting to states with lower duopoly innovation or higher monopoly innovation.
Quality preferences can effect the evolution of two state variables: the ownership distribution ∆ and, in the
duopoly, the quality difference q1t − q2t. The effect of γ on realized ownership distributions is small and has
little impact on innovation in both the duopoly and monopoly since firms’ innovation policies are relatively
insensitive to ∆, as illustrated by the innovation policies in panels 7 and 8 of Figure 2. The quality difference
in panel 5 of Figure 13, however, widens as γ increases, which has two distinct effects on innovation. First, the
leader innovates more with a wider lead, as illustrated by the innovation policy in panel 9 of Figure 2. Second,
the share of periods with tied firms declines. Since the frontier advances when either tied firm innovates, one
might expect this factor to put downward pressure on innovation as γ increases. However, as seen in panel
1 of Figure 13, the gap between the probability of either tied firm innovating and an individual tied firm
innovating increases in γ. This larger gap offsets the lower probability of being tied, as revealed by the nearly
flat product of the gap and the probability in panel 5. The net effect of γ’s influence on states encountered is
therefore the positive effect of higher innovation by the duopoly leader as the quality difference widens.
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Appendix E: Adding Depreciation to the Model

To allow for physical depreciation of the durable good, as needed for Observation 6, we modify the transition
kernels for ∆ and q̃. Let φ denote the probability that each consumer’s q̃t declines by one δ-step. The
post-depreciation ownership share for each vintage k in ∆′ is then

∆′k =


∆′k(∆, q, p) + φ∆′k+δ(∆, q, p) if qk = q′

(1− φ)∆′k(∆, q, p) + φ∆′k+δ(∆, q, p) if q′ < qk < q̄′

(1− φ)∆′k(∆, q, p) if qk = q̄′
, (37)

where ∆′(·) is given in Footnote 17, the first line enforces the lower bound for q̃′, and the third line acknowledges
that the frontier does not gain mass from a higher vintage. The consumer’s continuation values in equations
(3), (4), and (5) must also integrate over the realization of this stochastic depreciation for the consumer’s q̃′.
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Table 1: Empirical and Simulated Moments

Moment Actual Actual SE Fitted

Intel Price Equation:
Average Intel Price 219.7 (5.9) 206.2
qIntel,t − qAMD,t 47.4 (17.6) 27.3
qIntel,t − ∆̄t 94.4 (31.6) 43.0

AMD Price Equation:
Average AMD Price 100.4 (2.3) 122.9
qIntel,t − qAMD,t -8.7 (11.5) -22.3
qAMD,t − ∆̄t 16.6 (15.4) 5.9

Intel Share Equation:
constant 0.834 (0.007) 0.846
qIntel,t − qAMD,t 0.055 (0.013) 0.092

Potential Upgrade Gains:
Mean (q̄t − ∆̄t) 1.146 (0.056) 1.100

Mean Innovation Rates:
Intel 0.557 (0.047) 0.597
AMD 0.610 (0.079) 0.602

Relative Qualities:
Mean qIntel,t − qAMD,t 1.257 (0.239) 1.352
Mean I(qIntel,t ≥ qAMD,t) 0.833 (0.054) 0.929

Mean R&D / Revenue:
Intel 0.114 (0.004) 0.101
AMD 0.203 (0.009) 0.223

Simulated moments, as defined in Section 4.1.1, are averages over
10,000 simulations of 48 quarters of data. Though a constant is
in each of the first two regressions, we match each firm’s mean
price instead. I(·) is an indicator function.
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Table 2: Parameter Estimates

Parameter Estimate Std. Error

Price, α 0.0131 0.0017
Quality, γ 0.2764 0.0298
Intel Fixed Effect, ξIntel -0.6281 0.0231
AMD Fixed Effect, ξAMD -3.1700 0.0790
Intel Innov, a0,Intel 0.0010 0.0002
AMD Innov, a0,AMD 0.0019 0.0002
Spillover, a1 3.9373 0.1453

Stage-1 Marginal Cost Equation
Constant, λ0 44.5133 1.1113
max(0, qcompetitor,t − qown,t), λ1 -19.6669 4.1591

Table 3: Industry Measures under Various Scenarios

(1) (2) (3) (4) (5) (6) (7)
AMD-Intel Symmetric No Spillover Myopic Pricing Social

Duopoly Duopoly Monopoly Duopoly AMD-Intel Monopoly Planner

Industry Profits ($billions) 408 400 567 382 318 322 -267

Consumer Surplus 2978 3012 2857 3068 2800 2762 4032
CS as Share of Monopoly CS 1.042 1.054 1.000 1.074 0.980 0.967 1.411

Social Surplus 3386 3412 3424 3450 3118 3084 3765
SS as Share of Planner SS 0.929 0.906 0.940 0.916 0.828 0.819 1

Margins 3.434 2.424 5.672 3.478 2.176 2.216 0.000
Price 194.17 146.73 296.98 157.63 140.06 143.16 43.57

Frontier Innovation Rate 0.599 0.501 0.624 0.438 0.447 0.438 0.869
Industry Investment ($millions) 830 652 1672 486 456 787 6672

Mean Quality Upgrade % 261 148 410 187 175 181 97
Intel or Leader Share 0.164 0.135 0.143 0.160 0.203 0.211 0.346
AMD or Laggard Share 0.024 0.125 0.091 0.016 0.014

Reported values are based on 10,000 simulations of 300 periods each. Profits, surplus, and investments are reported in
billions of dollars. Profits and surplus are discounted back to period 0. Social surplus is the sum of consumer surplus and
industry profits. Symmetric duopoly uses Intel’s firm-specific parameters for both firms. Under “myopic pricing” firms
choose price ignoring its effect on future demand. The “no spillover” duopoly uses symmetric firms, both with Intel’s
parameters. The social planner sells two products, but the results are nearly identical for a single-product planner. The
monopolist offers one product. Margins are computed as (p−mc)/mc. Price and margins are share-weighted averages. In
the symmetric duopoly, both firms have Intel’s ξj and a0,j .
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Figure 1: CPU Qualities, Prices, Costs, and Shares: 1993 Q1 to 2004 Q4
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Figure 2: Value and Policy Functions: Monopoly and Symmetric Duopoly: Column 1
corresponds to the monopolist. Columns 2 and 3 correspond to the symmetric duopoly. In columns
1 and 2, the x-axis is the average quality in the ownership distribution ∆. In column 2, values are
reported for two scenarios: when the firms are tied and when their qualities differ by 4 δ-steps. In
column 3, ∆ is fixed at its most frequent value in the duopoly simulations and the x-axis is the
quality difference between the leader and laggard, which ranges from 8 to 0 δ-steps. Histograms in
the first row provide simulated frequencies of each state.
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Figure 3: Value and Policy Functions: Monopoly and Symmetric, No Spillover
Duopoly: The notes to Figure 2 apply to this figure as well.
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Figure 4: Average Purchase Probabilities by Vintage: AMD-Intel Duopoly
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Figure 5: Average Ownership Distributions: AMD-Intel Duopoly and Monopoly
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Figure 6: Foreclosing AMD from the Market
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Figure 7: Monopoly versus Duopoly Innovation as (α, γ) Vary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Duopoly Innovation Rate

α = .002

α = .01

α = .02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Monopoly Innovation Rate

α = .002

α = .01

α = .02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

Monopoly Innovation − Duopoly Innovation

α = .002

α = .01

α = .02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

Duopoly CS / Monopoly CS

α = .002

α = .01

α = .02

quality coefficient

47



Figure 8: Equilibrium Outcomes in the Monopoly and Symmetric Duopoly as
Depreciation Varies: Depreciation is measured as the quarterly probability that q̃ declines one
δ-step.
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Figure 9: Innovation in the Monopoly and Symmetric Duopoly as Market Growth and
Market Size Vary
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Figure 10: Symmetric Duopoly Innovation as the Spillover Varies: For comparison, the
monopolist’s values relative to the estimated-spillover symmetric-duopoly are 2.34 for margins, .949
for consumer surplus, 1.004 for social surplus, and 1.246 for innovation.
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Figure 11: Innovation in the Monopoly and Symmetric Duopoly as Product
Substitutability Varies
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Figure 12: Innovation in the Symmetric Duopoly with Nondurable Goods as Product
Substitutability Varies
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Figure 13: Decomposing Changes in Innovation as γ Increases: Panels 1 and 3 plot the
effect of the quality coefficient, γ, on innovation and investment by firms in a symmetric duopoly
and monopoly for particular ∆ values of 7.25 and 3.5 δ-steps below the frontier, on average across
consumers. All panels except panel 5 (bottom-left) use the legend in panel 1 and condition on these
same ∆ values, which match their respective simulated averages. Panel 2 plots the derivative of
firms’ innovation probabilities with respect to investment and, for the tied duopolists, the
derivative of either firm advancing the frontier. Panel 4 is the derivative of investment with respect
to γ, and panel 6 is the derivative of innovation with respect to γ. Panel 5 reveals simulated
summary measures of which states are visited as γ varies.
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