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Abstract

We estimate the relationship between advertising prices on prime-time network

television and audience size and composition. Hedonic analysis reveals a price pre-

mium for (a) viewers from large audiences, (b) viewers 35–49 years old, and (c) view-

ers from homogeneous audiences. We analyze the optimal scheduling of prime-time

shows using the viewer-choice model of Goettler and Shachar (2001) to predict show

ratings for each demographic segment. Optimal schedules increase revenue by about

17 percent for each network when competitors’ schedules are fixed. The gains are

similar in equilibrium of the scheduling game because the increased use of counter-

programming and nightly homogeneous-programming benefits the networks as a

whole at the expense of non-viewing and non-network alternatives.

Keywords: advertising, hedonic analysis, spatial competition, network television,

optimal scheduling, Nash equilibrium
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1 Introduction

Most people think of the broadcast networks as being in the entertainment business. En-

tertainment, however, is merely an input to their primary business of selling access to

audiences to companies and organizations seeking exposure. In 2010, spending on adver-

tisements in the United States reached $131.1 billion, about half of which was spent on

television ads. The broadcast networks received $25 billion and have increased ad revenue

over recent decades despite the drop in their Nielsen ratings from 45 percent in 1985 to 26

percent in 2008 as viewers migrated to cable programming and non-viewing activities such

as web-surfing.1 One reason for these gains is the increase in the demand for advertising

as the economy expands and companies increasingly seek to establish brand awareness.

Another reason is that, despite shrinking audiences, network television remains the best

option for advertisers seeking immediate exposure to large swaths of the U.S. population:

the broadcast networks are the only consistent providers of captivated audiences that

exceed 10 million viewers. Moreover, shows that deliver such large audiences command

higher costs per thousand viewers (CPM) in the ad market.

Nearly as important as audience size is the demographic composition of the viewers.

Marketers typically want to reach younger viewers who are more impressionable and view-

ers who have disposable income or are responsible for household purchases. Accordingly,

advertisers are willing to pay a premium to advertise on shows attracting such consumers.

The first contribution of this paper is to estimate, for prime-time network television,

the relationship between ad prices and audience size and composition.2 We estimate

hedonic pricing equations using the Household & Persons Cost Per Thousand data from

Nielsen Media Research, and find a price premium for (a) viewers from large audiences,

(b) viewers 35–49 years old, and (c) viewers from homogeneous audiences. Using magazine

1Advertising data are from Kantar Media reported by Advertising Age on http://www.adage.com.
The historical Nielsen ratings are reported in Gorman (2010) “Where Did The Primetime Broadcast TV
Audience Go?”

2Fisher, McGowan, and Evans (1980) estimate the audience-revenue relationship for local television
stations to assess the revenue effects of changing cable television regulations.
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advertisement prices, Koschat and Putsis (2002) also find a premium for middle-aged and

homogeneous readership audiences. However, they find ad prices to be concave with

respect to circulation, whereas we estimate a convex relationship between ad prices and

audience size. This convexity is consistent with the broadcast networks having increased

market power when selling commercial time on shows with large audiences because no

other media can deliver such audiences. More importantly, this convexity can affect firms’

programming and scheduling strategies.

The second goal of this paper is to determine equilibrium network strategies given

the estimated relationship between ad prices and audience size and demographics. In the

short run, a network’s strategic choice corresponds to the scheduling, or sequential posi-

tioning, of its stock of shows. In the long run, by canceling some shows and purchasing

or developing others, a network can change the set of shows available to schedule.3 Be-

cause programming cost data are not available, researchers have focused on the short-run

strategy of show scheduling, which is closer to being cost neutral. Rust and Eecham-

badi (1989) and Kelton and Schneider (1993) find networks can significantly increase

average prime-time ratings by changing their schedules. Goettler and Shachar (2001)

confirm this finding, though with more moderate gains ranging from 6 to 16 percent. One

possible explanation for the finding of sub-optimal schedules is that these studies assume

a network’s objective is to maximize ratings, not profits. To assess whether the assump-

tion of ratings maximization drives the discrepancies between observed and recommended

schedules, we compare equilibrium schedules under both profit maximization and ratings

maximization.

Equilibrium schedules might differ under ratings maximization versus profit max-

imization for two reasons. First, the value of additional viewers differs across shows,

given the nonlinear hedonic pricing model for commercial time. For example, we estimate

3We assume the number of commercials aired per hour is fixed. Until 1981, the National Association
of Broadcasters limited commercial time during prime time to 6 minutes per hour. However, in 1981,
this restriction was declared a violation of antitrust laws and the limit was dropped. Since then, prime-
time commercial time has steadily increased, reaching 15.35 minutes per hour in 1996, according to
the Commercial Monitoring Report. Evaluating the equilibrium number of commercials per hour is an
interesting topic we leave for future research.
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that an additional million viewers increases ad revenue by $86,974 for each half-hour of

Roseanne, a popular show in the 1990s with desirable audience demographics, compared

to an increase of only $50,649 per half-hour of Hat Squad, a less popular show with less-

desirable audience demographics. A network would therefore be willing to sacrifice viewers

from a show with low marginal revenue for a smaller gain in viewers of a show with high

marginal revenue. Such an exchange could be achieved, for example, by scheduling the

latter show in a relatively more favorable time slot against weak competitors or following

a strong lead-in show. Discrepancies between schedules that maximize ratings instead of

profits can also reflect costs of adjusting schedules. When setting schedules, the appeal of

new shows is unknown. This uncertainty can result in ex-post sub-optimality that might

persist if adjustment costs are high.

We therefore assess whether the ratings gains found in previous studies can be

attributed to modeling firms as maximizing ratings instead of maximizing profits. We

find schedules that maximize ad revenue net of schedule adjustment costs are similar

to schedules that maximize ratings. This finding suggests ratings-increasing strategies,

such as counter-programming, placing strong shows at 8:00 or 9:00, and avoiding head-

to-head battles among networks’ best shows, are consistent with revenue maximization.4

Moreover, the revenue gains from better implementing these strategies are sufficiently

high that adjustment costs cannot explain why firms continue with sub-optimal schedules.

Without switching costs, the equilibrium revenue gains for each network range from 11

to 18 percent. With switching costs, fewer changes occur and the gains range from 7 to

9 percent. Hence, we conclude the ratings gains Goettler and Shachar (2001) obtain and

the revenue gains we find in this paper indeed suggest networks’ sub-optimal behavior.

The gains primarily result from more effective counter-programming by scheduling news

magazines prior to 10:00 and sitcoms after 10:00. Although the networks have abandoned

the rule-of-thumb that news magazines should only air from 10:00 to 11:00, they continue

to avoid airing sitcoms past 10:00.

4All times we report refer to p.m. EST, as our focus is prime-time programming.
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The paper proceeds as follows. In the next section, we discuss the market for

commercial time on network television, estimate the relationship between ratings and ad-

vertisement revenue, and discuss potential implications of this relationship for network

strategies. In section 3, we compute best-response schedules and Nash equilibria of the

scheduling game and analyze the strategic behavior of the television networks under var-

ious specifications of the payoff function. Section 4 concludes.

2 Network Ratings and Advertisement Revenue

We describe the advertising market for network television and present our data in sec-

tion 2.1. We then estimate a hedonic model for ad prices in section 2.2 and discuss its

implications for the networks’ strategies in section 2.3.

2.1 The Network Advertising Market and Data

Typically 70 to 80 percent of network commercial time is sold in the up-front market in

May for the upcoming television season commencing in early September. The remainder

is sold in the scatter market during the season, occasionally hours before the show airs.

Networks use unsold time to promote the their shows or provide public service messages.

Contracts specify the prices for the commercial time and minimum guaranteed ratings, as

measured by Nielsen Media Research.5 Often the guaranteed ratings correspond to par-

ticular demographic segments. For example, advertisers seeking young viewers typically

receive guarantees for viewers aged 18–49. Networks also occasionally guarantee ratings

particular to gender or household income. When shows do not attain the guaranteed rat-

ings, the networks provide “make-goods” to compensate their short-changed advertisers.

These make-good commercials, however, typically air on less popular shows and do not

fully compensate advertisers.6

5The accuracy of these ratings has been the subject of much debate. Nonetheless, the Nielsen ratings
are the best available and serve as the industry standard.

6Rather than specifying the total price for airing a commercial on a particular show, the contracts
could specify a per-viewer (or per viewer with desired demographics) rate that would then be converted
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If commercial prices merely reflected guaranteed ratings, then the relationship be-

tween advertisement revenues and guaranteed ratings would be the relationship of in-

terest. According to network executives contacted for this research, commercial prices

reflect expected audiences, and the demographics of these expected audiences, not the

lower guaranteed ratings of the contracts. Because we do not possess data on the expected

ratings, we must estimate the relationship between realized ratings and advertising rev-

enues. Assuming the expected ratings to be unbiased, we interpret the error term in the

econometric models in section 2.2 as the difference between expected and realized ratings.

The data are from the Household & Persons Cost Per Thousand monthly publica-

tions by Nielsen Media Research for September through December, 1992. These publi-

cations list for each network show the cost of airing a 30-second commercial during its

broadcast and its estimated audience sizes for the following categories: Households, Total

Adult Women, Women aged 18–34, Women aged 18–49, Women aged 25–54, Total Adult

Men, Men aged 18–34, Men aged 18–49, Men aged 25–54, Teens (aged 12–17), and Chil-

dren (aged 2–11).7 ABC, CBS, NBC, and Fox provided the commercial-costs data to the

Nielsen monitoring service. We derive the estimated audience sizes from the Nielsen Tele-

vision Index (NTI) sample, which provides minute-by-minute records of viewers’ choices

using the People Meter device. Because the publication is monthly, all data are averages

over the month.

Though the data contain observations for all network shows, we only use shows

airing past 6:00 because the ratings data are often missing for earlier shows, and our

application involves scheduling evening shows. We also exclude 173 shows that aired

only once during the period because many of these observations appear to be outliers.

For all specifications, we reject the Wald test of equality of estimates using shows with

into a total price after Nielsen reports the show’s audience size. While this alternative avoids the risk of
paying for viewers who are not delivered, the uncertain total payment complicates the implementation
of ad campaigns on fixed budgets. Given the absence of such contracts, the nuisance of a variable total
payment must exceed the concern that some shows will deliver fewer viewers than expected.

7Despite being from 1992, the data are relevant because Nielsen still reports these same demographic
categories and prime-time television has changed little. The networks still deliver a mix of news, comedy,
drama, and reality programming to attract a broad swath of mainstream America. The most significant
change is the nature of reality content, which is now more contest oriented.
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multiple airings and using shows aired once. Excluding these 173 observations leaves 437

observations to estimate the models in the next subsection.

2.2 A Model of Ad Prices

The top panel in Figure 1 reveals a linear relationship between the logarithm of each

show’s audience size and the logarithm of the price of a 30-second commercial during

that show. Whereas the log-log model, with an R-squared of 0.8159, explains costs per

commercial well, audience size explains only 5.8 percent of the variation in costs per

viewer, depicted in the bottom panel. We show viewer demographics are the primary

driver of this variation, which spans .19 to 1.32 cents per viewer.

To precisely measure the effect of demographics and audience size on advertising

prices, we estimate a reduced-form hedonic pricing equation. Hedonic analysis assumes

the value of a product can be implicitly decomposed into valuations for separately ob-

served characteristics (Griliches 1967, 1971, and Rosen 1974). Estimating the hedonic

pricing equation yields implicit market prices for each characteristic. Rosen (1974) and

Epple (1987) emphasize the difficulty of consistently estimating the structural supply and

demand equations using hedonic analysis. However, we only need the reduced-form im-

plicit prices: our counterfactual analysis of show scheduling does not affect equilibrium

prices, because changing schedules only changes quantities marginally, relative to the ad

market as a whole.

Although the log-log plot in Figure 1 establishes a nonlinear relationship between

ad prices and audience size, the degree of curvature is not obvious.8 The Box-Cox (1964)

model provides a simple method for estimating the degree of nonlinearity inherent in the

relationship between variables of interest. We define the transformation

x(λ) ≡

 log(x) if λ = 0

(xλ−1)
λ

otherwise
(1)

8Note the log-log model allows costs per viewer to vary with audience size. For example, if the slope
exceeds unity then costs per viewer increase with audience size.
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for any variable x. Linear and log transformations are special cases that correspond to

λ = 1 and λ = 0, respectively. We use this transformation to model ad prices as

P (λ)
s = α +Dsγ + Z(λ)

s β + εs , (2)

where Ps is the price per 30-second commercial aired during show s, Zs is the vector of

explanatory variables to be transformed, and Ds is the vector of explanatory variables

not to be transformed. The only explanatory variable the results suggest should be

transformed is audience size (i.e., number of viewers) for show s. Thus, we define Zs

to be audience size.9 The following demographic variables comprise Ds: the fraction of

the audience aged 12–17 years old, the fraction aged 18–34, the fraction aged 35–49, the

fraction aged 50 and older, the fraction of the audience that is female, the square of the

fraction that is female, and the standard deviation of the ages of the viewers comprising

an audience.

Table 1 presents estimates of four models: (1) the Box-Cox model using all the

variables, (2) the log-log model using all the variables, (3) the Box-Cox model using only

the significant variables, and (4) the log-log model using only the significant variables.

First note we reject the log-log specifications using likelihood ratio tests of the restriction

that λ = 0 in the Box-Cox specification. The test statistics are 14.85 and 15.33, yielding

p-values less than .001. We also reject the (unreported) linear models with test statistics

exceeding 280 for the restriction that λ = 1. Despite rejecting the log-log model, we report

its estimates, because it is widely used and easier to interpret than the Box-Cox model. For

example, a coefficient on audience size exceeding 1 implies a convex relationship between

ad prices and audience size, resulting in a higher CPM for viewers in large audiences.

Another notable finding is that viewers aged 12–17 or 18–34 are no more valuable to

advertisers than viewers aged 2–11 (the excluded age category). These data are from 1992,

at which time the broader age category of 18–49 was considered by network strategists

to be the most desirable. Our estimates indicate that the upper end of this category was

the driving force behind the value of delivering 18- to 49-year-olds to advertisers. The

9Dividing Zs by the U.S. population yields the familiar Nielsen rating for the show.
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attractiveness of the 35- to 49-year-olds may reflect the higher income of older viewers. If

we were to separately condition on income, we suspect the coefficient on “Fraction aged

18–34” would increase, relative to the coefficient on “Fraction aged 35–49.” Unfortunately,

the income data are not available. Also note the negative impact on ad price when shows

target viewers 50 years of age and older.

The estimates corresponding to the standard deviation of viewers’ ages and the gen-

der variables reveal that more homogeneous audiences command higher prices. This result

is consistent with the emphasis on targeted marketing by advertisers. Most advertised

products are relevant to particular segments of the population. Accordingly, advertisers

are willing to pay a higher CPM for shows that deliver the target segments in high concen-

trations. Ad prices therefore decrease in the dispersion of viewers’ ages and are quadratic

in the fraction of viewers that are female. This quadratic relationship has a minimum at

0.51 and is depicted for the show Melrose Place, as an example, in Figure 2. The fraction

of women in audiences ranges from 0.34 to 0.70, contributing to the significant variation

in prices (and prices per viewer) for audiences of the same size.10

Table 2 reports estimates for two models of prices per viewer. The estimates accord

with the price-per-commercial models in Table 1: the signs are all the same and the same

variables are statistically significant. Also, the positive coefficient for audience size (in

millions of viewers) confirms the premium paid for large audiences, as implied by the

estimated convexity between ad price and audience size.

Three factors contribute to the convex relationship between ad prices and audience

size. First, advertising on top-rated shows provides a “halo” effect: advertised products

benefit from being associated with high-quality shows. Second, advertising campaigns

can attain high reach (i.e., share of target segment exposed to the ad at least once) more

easily by advertising on shows with the largest audiences. Overlap among audiences

implies an ad aired on two shows with 10 million viewers each will reach fewer than 20

10Koschat and Putsis (2002) investigate the benefits to magazine publishers of unbundling access to
demographic segments of a magazine’s readership. The ability to expose television viewers of a given
show to demographic-specific or viewer-specific ads is limited.
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million unique viewers—many fewer if the advertiser buys time on similar shows to target

specific demographic segments. Third, the networks have some market power when selling

time on top shows, because cable channels or other media outlets rarely deliver audiences

over 10 million. When selling time on less popular shows, however, the networks face

many close substitutes, both on television and in other media. An FCC study concluded

radio, magazine, newspaper, billboard, and alternative television advertising constrain

the prices of network advertising such that prices for network ads reflect competitive

forces (FCC, Network Inquiry Special Staff, 1980).

2.3 Implications for Scheduling Strategies

Equations (1) and (2) imply show s has an expected price of

Ps = E
[(

1 + λ(α +Dsγ + Z(λ)
s β + εs)

)1/λ
]
, (3)

where E[·] denotes the expectations operator. Table 3 presents expected advertisement

revenue generated by three shows with different audience sizes and compositions. We

use Monte Carlo integration using 50,000 draws of εs to compute the expectation in

equation (3). The expected gains in revenue due to an additional million viewers appears

in the lower portion of the table.

The importance of viewer demographics is evident when comparing Hat Squad to

Melrose Place. Advertising on Melrose Place costs (and is predicted to cost) more than

50 percent more than advertising on Hat Squad despite the fact that the latter show

has 22 percent fewer viewers. The younger and more homogeneous audience of Melrose

Place compared to Hat Squad drives this premium: the Melrose Place audience is 64.7

percent female with 7.3 percent aged 50 years or older, whereas Hat Squad’s audience

is 58.7 percent women with 53.9 percent aged 50 and older. Accordingly, Melrose Place

yields almost twice as much money per viewer as does Hat Squad. Although the audience

demographics for Roseanne are not quite as good as those for Melrose Place, reaching

32.9 million viewers triggers a large convexity-based premium that enables Roseanne to

nearly match the per-viewer price of Melrose Place.
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As illustrated in the last three rows of Table 3, the marginal value of additional

viewers differs across shows. Per commercial, an additional million viewers is worth $5,065

for Hat Squad, $8,953 for Melrose Place, and $8,697 for Roseanne. A network can therefore

increase its revenues while lowering its average viewership across shows. Time slots vary

in the degree of competition from other shows or non-viewing activities (e.g., sleep). By

switching an unpopular show in a less competitive time slot with a popular show from a

competitive time slot, the network can sacrifice ratings from a low-marginal-revenue show

to increase the ratings of a high-marginal-revenue show. For example, suppose Melrose

Place had a difficult time slot and Hat Squad had an easy time slot on the same network

such that switching the two shows would result in a gain of a million viewers for the former

show and a loss of a million for the latter. Using the predicted gains from Table 3, the

change in weekly revenue for the network would be 2(89, 529−50, 649) = $77,760 because

each show is an hour long. Over a 20-episode season, the revenue gain would exceed $1.5

million. This example demonstrates that maximizing revenue (or profits) might lead to

schedules that do not maximize ratings.

The previous example is illustrative but does not account for effects of schedule

changes on the ratings of the other shows on the nights involved in the switch. Such

effects exist because each time slot is linked through viewer persistence, as discussed in

section 3.1. Nonetheless, the general strategy of airing shows with high marginal returns

in favorable time slots is implied by the models in Table 1. For example, this strategy

suggests the networks should place their strongest shows at 9:00 p.m.—the most popular

time slot for watching television during which competition from the non-viewing option

is lowest.11 Second, the networks should avoid airing their best shows against other

networks’ best shows because top shows generate high prices per viewer. For instance,

NBC dominated Thursday-night television during the 1990’s with little competition from

the other networks who instead aired their top shows on other nights.

11Goettler and Shachar (2001) show the high ratings at 9:00 reflect reduced utility from non-viewing
activities, in addition to high-quality shows being aired at 9:00. One possible reason for the increased
viewing at 9:00 is the desire to relax before bedtime by watching television.
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Of course, many other factors also influence the networks’ scheduling strategies. The

networks often avoid competing for the same types of viewers by counter-programming—

airing shows with characteristics different from those of the other shows in the same time

slot. Each network also tends to air similar programs in sequence in an effort to continue

to serve its viewers from the previous period. This strategy is known as homogeneous

programming. A third strategy is to air strong shows at 8:00 to secure a large audience

that, due to viewer persistence, will likely stay tuned for most of the evening. We assess the

extent to which these strategic considerations manifest themselves in the actual schedules

the networks air, and compare the results to schedules that maximize either ratings or ad

revenue.

3 Strategic Network Behavior

To analyze competition among the broadcast networks, we must specify the strategy

space and each network’s payoff function. Although profit maximization is the typical

firm objective, revenue maximization is consistent with profit maximization if costs do

not vary over choices in the strategy space. By focusing on firms’ scheduling strategies,

programming costs are constant across candidate strategies since the network airs the

same set of shows regardless of the schedule.12

In section 3.1, we present our method for computing payoffs for alternative schedules.

In section 3.2, we analyze scheduling when schedule changes are costless, and compare

our findings to those obtained in Goettler and Shachar (2001) for networks that maximize

ratings. In section 3.3, we consider optimal schedules when changing the schedule is costly.

In section 3.4, we conclude the analysis by computing Nash equilibrium of the scheduling

game, both with and without adjustment costs.

12If we had data detailing the costs of purchasing (or developing) shows, we could also analyze com-
petition in the longer run in which the networks can change the set of shows they air. In the long run,
assuming the networks maximize ratings may be inappropriate given the huge sums of money required
to purchase hit shows, such as E.R., for which NBC paid Warner Brothers up to $13 million per episode
(Vogel 2010).
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3.1 Predicting Ratings and Revenues for Alternative Schedules

To assess payoffs for scheduling strategies, we must predict shows’ demographic-specific

ratings for counterfactual schedules. Previous studies use a variety of models to predict

ratings. Horen (1980) and Kelton and Schneider (1993) use linear aggregate ratings models

to facilitate the use of integer programming to find schedules that maximize weekly ratings.

The drawback of these models is they do not identify the interwoven effects of switching

costs, show characteristics, and viewer heterogeneity. To treat the network’s scheduling

problem as an integer programming task, these studies assume each show’s contribution to

the weekly ratings is independent of its preceding and following shows. This assumption

contradicts evidence that the number of viewers staying tuned to a network during a show

change depends on the similarity of the two shows. Over the week of November 9, 1992,

an average of 56 percent of a prime-time show’s viewers watched the end of the previous

show on the same network. This lead-in effect, however, ranges from 32 percent to 81

percent and tends to be higher the more similar a show is to its lead-in show (Goettler

and Shachar, 2001).

To account for such linkages, we use a structural discrete-choice model in which

viewers choose from among a set of shows possessing various show characteristics. A new

schedule corresponds to a rearrangement of the show-specific characteristics, that are ei-

ther estimated or specified a priori. Obviously, a model will accurately predict ratings

only if these show characteristics effectively characterize the shows. Indeed, one of the

difficult aspects of analyzing the strategic behavior of the television networks is identifying

suitable show characteristics. The simplest approach is to categorize each show a priori,

perhaps as a comedy, drama, or news show. Such labels, however, are ineffective: shows

in the same category often have striking differences, and shows in different categories

often have similarities. Rust and Eechambadi (1989) analyzes scheduling issues using an

augmented version of the Rust and Alpert (1984) model that assigns shows a priori to one

of several categories. Alternatively, show characteristics have been estimated by Gensch

and Ranganathan (1974) using factor analysis and by Rust, Kamakura, and Alpert (1992)
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using multidimensional-scaling methods. Neither of these studies estimates show charac-

teristics simultaneously with the other determinants of viewer behavior, such as costs of

switching channels. Goettler and Shachar (2001) use a structural discrete-choice model

to simultaneously estimate all components of the choice model, allowing for both struc-

tural state-dependence and unobserved heterogeneity to explain the observed persistence

in viewers’ choices.13 Because their estimated model corresponds to the data-generating

process itself, it is appropriate for evaluating counterfactual experiments, such as intro-

ducing new schedules. The other models, however, are subject to the Lucas (1981) critique

because their estimates of show characteristics are based on reduced-form methods and

would likely differ under different schedules. Thus, we employ the model of viewer choice

that Goettler and Shachar (2001) estimate using a panel data set from Nielsen Media

Research of 3,286 viewers’ choices during each prime-time quarter-hour over the week of

November 9, 1992.

The model is a factor-analytic logit model (Elrod and Keane 1995) with state de-

pendence. The factor-analytic structure explains variation across shows in the lead-in

effect and state dependence explains why its minimum is well-above zero.

The model consists of (a) show characteristics in a four-dimensional latent attribute

space, (b) the distribution of viewers’ most preferred locations (ideal points) in this space,

(c) a vertical characteristic (quality) for each show, (d) switching costs (when transitioning

across channels or across viewing/non-viewing options), (e) the utility from not watching

television, and (f) the utility from watching non-network programming. The switching

costs, ideal points, utility from not watching television, and utility from non-network

programming all vary across demographic segments defined by age, gender, household

income, and other measures. Shows that appeal to the same viewers (i.e., have high

joint audiences) are estimated to be near each other in the latent attribute space so that

consumers with ideal points near these similar locations are likely to watch both of them.

See Appendix A for model specification and estimation details.

13Dubé, Hitsch, and Rossi (2010) illustrate the importance of allowing for heterogeneous preferences
when estimating state dependence.
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For a given schedule, we use predicted ratings for each demographic segment to

construct Zs and Ds for each show, which translate to revenues using equation (3).

3.2 Optimal Scheduling

Network strategists and executives actively debate the scheduling of their shows. For

the most part, they rely on their intuition and insights from aggregate and demographic-

specific Nielsen ratings. Unfortunately for the networks, to precisely account for the

many factors influencing viewer behavior, such as the lead-in effect, show competition,

and viewer heterogeneity, one needs the individual-level Nielsen data.14 Disentangling the

interaction of these factors is the attraction of the model we use to evaluate alternative

schedules.

Each network’s best-response schedule maximizes its payoff holding the other net-

works’ schedules fixed. We employ the “iterative improvements” approach of combinatoric

optimization to find an approximate solution to the discrete optimization that yields the

optimal schedule. As detailed in Appendix B, we search for payoff-improving swaps of

blocks of programming of various lengths and from various initial schedules.

Table 4 presents elements of the best-response schedules for each of the big three

networks for the week of November 9, 1992, using ad revenue as the payoff function.

Each network obtains significant revenue gains—17.7 percent for ABC, 16.8 percent for

CBS, and 16.5 percent for NBC.15 These percentage gains translate into $6.1 million to

$7.1 million per week, assuming 10 minutes of network commercial time each hour.16

Multiplying by 52 yields annual gains ranging from $317 million to $369 million per year.

Also note the percentage gains in ratings are similar to the revenue gains.

What types of scheduling strategies generate these gains in revenues and ratings?

14The lead-in effect refers to the tendency for shows to have high ratings if the preceding (or lead-in)
show had obtained a high rating.

15In 1992, Fox only broadcasted shows on Wednesday, Thursday, and Friday, and only from 8:00–10:00.
As such, we focus on the three major networks.

16The 15.35 minutes of commercials time reported in the introduction includes time sold by the affiliates
and time used to promote the network’s programs.
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The lower half of Table 4 provides summary measures of several strategies the networks

implement. We measure counter-programming (CP) as the average distance from the com-

petition in each quarter-hour. Two measures reflect the degree of homogeneous program-

ming for network j: nightly-homogeneity (NH) is the average distance between shows’

attribute-space locations zjt for shows airing the same night, and sequential-homogeneity

(SH) is the average distance between a network’s zjt in sequential periods. Three other

strategies pertain to the placement of quality or power shows. Often a network airs “power

on the hour” because more viewers have just finished watching a show, and are willing

to switch channels, than at the half-hour when many viewers are in the middle of an

hour-long show. A network also tends to air its power early in an effort to build a large

audience it can retain with the help of switching costs and inertia. Both “power on the

hour” and “power early” are captured by ηt, the average over days of each time slot’s

show quality, denoted ηjt in Goettler and Shachar (2001). The third power-placement

strategy involves not airing one’s best shows against other strong shows with (relatively)

similar z characteristics. We call this strategy “power counter” (PC) and measure its

implementation by the average over the week of the ratio RRjt/RRĵt, where ĵ refers to

the closest competitor (in the latent attribute space) to j at time t and RRjt is the relative

rating defined as the rating for j at t divided by the average rating for j over the week.

We expect optimal schedules to have higher CP (than the actual schedule), higher

PC, lower NH and NS, and higher ηt on the hours and early in the night. Table 4 reveals

that the ratings-maximizing schedule indeed implements each of these strategies to a

greater degree than observed in the actual schedules.

Though not reported in the table, the ratings-maximizing schedule implements these

strategies to a similar degree as the revenue-maximizing schedules. In fact, the ratings-

and revenue-maximizing schedules are the same for NBC and are similar for CBS and

ABC. The reason for the strong similarity is that ratings maximization also provides the

incentives related to audience size and composition (discussed at the end of section 2.3).

For example, audience composition is already important under ratings maximization be-
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cause ratings are higher if shows that target a specific demographic segment are scheduled

on the same night. Also, avoiding “power wars” by placing hit shows in relatively easy

slots is important to both ratings maximization and revenue maximization. This analysis

demonstrates the simpler objective of ratings maximization is consistent with revenue

maximization, when assessing scheduling strategies.

3.3 Costs of Adjusting Schedules

The predicted revenue gains computed above are upper-bounds if costs to implementing

the best response schedule are non-trivial. Such costs could be substantial because many

schedule changes are needed to move from the original schedules to the best-response

schedules: 26 changes for ABC, 20 for CBS, and 18 for NBC.17

To account for adjustment costs in the iterative-improvements algorithm, we com-

pute best-response schedules assuming networks only swap one programming block with

another if revenue increases by at least 2 percent. This required percentage gain trans-

lates to a cost of about $38.7 million for ABC (0.02 × $124,061 per ad for ABC × 20 ads

per hour × 15 prime-time hours per week × 52 weeks per year). Because the primary

cost of changing the schedule is the opportunity cost of commercial time used to promote

the new schedule, we can view this cost as paying for 312 commercials to promote the

new schedule. Because this cost estimate is high, we are erring on the side of being too

conservative with respect to the recommended schedule changes. Using these costs, ABC

would optimally implement three changes in its schedule for a revenue gain of 10.2 per-

cent, CBS would optimally implement two changes for a gain of 9.7 percent, and NBC

would optimally implement two changes for a gain of 12.3 percent.

Hence, the networks appear to be scheduling sub-optimally, even when we consider

possible costs of schedule changes. Although these gains are non-trivial, they are mod-

est compared to the predicted gains reported in previous studies of network television

scheduling. For example, Rust and Eechambadi (1989) find a 78 percent improvement in

17We define a single schedule change as a swap of one continuous block of shows with another continuous
block, regardless of the number of shows in each block.
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NBC’s schedule using a stochastic, heuristic approach to finding the optimal schedule.

3.4 Nash Equilibrium

A natural question is whether the gains under autarkic optimal scheduling will persist in

equilibrium. A possible scenario is that strategic responses from the other networks will

erase the gains. We therefore compute Nash equilibria of the scheduling game. To find

an equilibrium, we cycle through the four networks, individually implementing their best-

response schedules holding the other schedules fixed. A schedule is a Nash equilibrium

if no network has an incentive to change unilaterally. The order in which the networks

hypothetically implement their best-response schedules marginally influences the equilib-

rium payoffs, but not in any predictable manner. Although one might expect first-movers

to attain the highest gains in payoffs, their gains are often not the highest.

Despite the possibility that no pure-strategy equilibrium exists, we always find an

equilibrium in fewer than four rounds. The equilibrium we find depends on the assumed

sequence of play in the equilibrium search. Fortunately, the usefulness of analyzing the

equilibrium is not in pinpointing the exact equilibrium schedule the networks should play.

Rather, we focus on strategic behavior that is common across all equilibria.

The most important finding is that the strategic responses from other networks do

not erode away the gains from unilateral optimization. In each equilibria we find, the

ratings and payoffs of the big three networks (ABC, CBS, and NBC) increase, though by

less than the gains associated with the best-response schedules (holding other networks’

schedules fixed). When ABC moves first, the percentage gains in revenue are 17.6 percent

for ABC, 10.9 percent for CBS, and 12.3 percent for NBC. When costs of schedule changes

are included in the payoff function as discussed above, revenues increase by 9.1 percent

for ABC, 7.0 percent for CBS, and 7.2 percent for NBC.18

As expected, the same strategies responsible for the gains under the autarkic sce-

18The gains are similar when other networks move first. For example, when CBS moves first the
percentage revenue gains without costs are 14.4, 10.1, and 15.5, respectively, for ABC, CBS, and NBC.
With costs, the percentage gains are 8.5, 7.7, and 12.1, respectively.
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nario are at work in equilibrium. Furthermore, we again find these strategies are the

same regardless of whether each network maximizes ratings or revenue. That is, the net-

works increase their revenues and ratings by increasing their use of counter-programming,

homogeneous programming, and airing strong shows on the hour and early in the night.

Inspecting the placement of shows in both the best-response schedules and the

equilibrium schedules, we find the counter-programming and homogeneous-programming

measures increase primarily by moving sitcoms past 10:00. Network strategists have

avoided airing half-hour shows past 10:00. Our findings suggest this rule-of-thumb may

not be optimal. At a minimum, experimenting with sitcoms after 10:00 seems warranted.

Because each network increases ratings and revenues, the gains must be achieved by

pulling viewers from the non-viewing and, to a lesser extent, non-network viewing alterna-

tives. This finding reflects the benefit to all the networks of counter-programming, along

both the vertical (quality) and horizontal dimensions of show attributes. Essentially, the

increased use of counter-programming enables the networks to provide programming in

each time slot that appeals to more viewers. Also, the increased homogeneous program-

ming induces viewers to stay tuned to the networks longer once they start watching.

4 Conclusion

First, we estimate the importance of audience size and demographic composition in de-

termining prices for commercial time on the broadcast networks. We find that for a given

audience size, higher prices are obtained by shows with more homogeneous viewers (as

measured by age and gender) and by shows with a high percent of 35- to 49-year-old

viewers. Shows with a high percent of viewers 50 years old and older generate yield lower

ad prices. Furthermore, we find the price per commercial is convex in the total number

of viewers. That is, cost-per-viewer (CPM) increases in the size of the audience.

Second, we combine the hedonic pricing function with the viewer-choice model of

Goettler and Shachar (2001) to evaluate optimal scheduling when the networks maximize

ad revenue, both with and without accounting for costs of adjusting schedules. We find
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the optimal schedules increase the networks’ revenues and are similar to the schedules that

maximize average ratings. Consequently, the ratings gains earlier studies report are not

an artifact of researchers using ratings as the firm’s objective function. Rather, the find-

ings of sub-optimal scheduling suggest the networks can better implement the recognized

strategies of counter-programming across networks within time slots and homogeneous

programming by each network during each night.

We close by noting that, despite advertisers’ preferences for reaching specific demo-

graphic segments, “addressable television advertising,” in which viewers of the same show

are exposed to different ads, remains in its infancy (Vascellaro 2011). Privacy concerns

and the high adoption costs for addressable distribution systems are formidable barriers

to growth, particularly given the uncertainty of the benefits to media companies. Theo-

retical studies by Iyer, et al. (2005), Gal-Or, et al. (2006), Athey and Gans (2010), and

Bergemann and Bonatti (2011), among others, provide interesting insights, but do not

agree on the effect of increased targeting on media firms’ prices and profits. If addressable

television advertising eventually takes off, we would hope to compare the implicit prices

in this paper to those under the new regime.
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Table 1: Estimates of Box-Cox and Log-Log Models of 30-second Commercial Prices

Model 1 Model 2 Model 3 Model 4

λ 0.1484 0 0.1504 0

(0.0404) (0.0403)

Constant 13.8109 -4.0589 14.5982 -3.9348

(10.9132) (1.0525) (10.6542) (0.7689)

Audience size(λ) 0.5443 1.1881 0.5381 1.1863

(0.1155) (0.0227) (0.1138) (0.0219)

Fraction aged 12–17 1.7281 0.5755

(4.7007) (0.9206)

Fraction aged 18–34 -0.5036 -0.1594

(2.3926) (0.4702)

Fraction aged 35–49 15.3507 3.0107 14.8117 2.7225

(7.2910) (0.4997) (6.9312) (0.3032)

Fraction aged 50+ -5.1219 -0.9580 -5.4289 -1.0243

(2.9686) (0.3596) (2.4701) (0.0863)

Std. dev. of ages -0.2434 -0.0485 -0.2495 -0.0488

(0.1254) (0.0127) (0.1220) (0.0102)

Fraction female -84.1238 -15.3597 -86.1786 -15.4026

(41.0696) (2.4782) (41.8296) (2.3992)

(Fraction female)2 82.8157 15.2010 84.9380 15.2769

(40.0120) (2.2493) (40.7882) (2.1764)

σ2 1.7189 0.0668 1.7978 0.0666

R-squared 0.8919 0.8917

Log Likelihood -4880.0806 -4887.5083 -4880.2075 -4887.8709

χ2 for H0: λ = 0 14.8553 15.3267

χ2 for H0: λ = 1 281.5602 282.8470

Standard errors are in parentheses.

The dependent variable (price per 30-second commercial)

and audience size are transformed using equation (1).

The excluded age demographic is the fraction of viewers aged 2–11.

The .05 critical value for the likelihood ratio tests is 3.84.
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Table 2: Estimates of Models of Costs Per Viewer (in cents)

Model 1 Model 2

Constant 3.3476 3.4341

(0.5419) (0.3954)

Millions of viewers 0.0071 0.0070

(0.0012) (0.0011)

Fraction aged 12–17 0.1032

(0.5423)

Fraction aged 18–34 0.0527

(0.2767)

Fraction aged 35–49 1.3628 1.3271

(0.2877) (0.1740)

Fraction aged 50+ -0.4595 -0.5080

(0.2131) (0.0508)

Std. dev. of ages -0.0235 -0.0246

(0.0075) (0.0059)

Fraction female -10.4588 -10.5391

(1.4484) (1.4032)

(Fraction female)2 10.0878 10.1620

(1.3144) (1.2726)

σ2 0.0229 0.0228

R-squared 0.4007 0.4006

Standard errors are in parentheses.
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ĵt

)
1.

09
1.

55
1.

13
1.

24
1.

27
1.

30

T
h
e

fi
rs

t
co

lu
m

n
co

n
ta

in
s

th
e

va
ri

ab
le

n
am

es
:

C
P

fo
r

C
ou

n
te

r-
P

ro
gr

am
m

in
g,

N
H

fo
r

N
ig

h
tl

y

H
om

og
en

ei
ty

,
S
H

fo
r

S
eq

u
en

ti
al

H
om

og
en

ei
ty

,
η
t

fo
r

q
u
al

it
y

at
ti

m
e
t,

an
d

P
C

fo
r

P
ow

er
C

ou
n
te

r.

T
h
e

va
ri

ab
le
R
R
jt

is
th

e
R
el
at

iv
e

R
at

in
g

d
efi

n
ed

as
th

e
ra

ti
n
g

fo
r
j

at
t

d
iv

id
ed

b
y

th
e

av
er

ag
e

ra
ti

n
g

fo
r
j

ov
er

th
e

w
ee

k
.

T
h
e

su
b
sc

ri
p
t
ĵ
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Figure 1: Commercial Prices and Audience Size
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Figure 2: Impact of Female Composition for Melrose Place
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Appendix A: Modeling Viewer Choice to Predict Rat-

ings

We use the estimated model of Goettler and Shachar (2001) to simulate viewers’ choices

for each quarter-hour of prime-time programming, 8 to 11 p.m. EST, Monday through

Friday, for the week of November 9, 1992. In each period t, individual i chooses from

among J = 6 options indexed by j, corresponding to (1) TV off, (2) ABC, (3) CBS,

(4) NBC, (5) Fox, and (6) non-network programming, such as cable or public television.

Individual i’s utility from watching network j in quarter-hour t is

uijt = ηjt − (zjt − νi,z)′(zjt − νi,z)

+δSampleSampleijt + δInProgressInProgressijt

+δStart,iStartijt + δCont,iContijt + εijt,

(4)

where ηjt is a quality attribute equally valued by all individuals, νi,z denotes viewer i’s K-

dimensional ideal point, and zjt denotes the K-dimensional location of network j’s show

during period t. Because none of these parameters are observed by the econometrician,

the factor-analytic structure in the first line of equation (4) is a latent attribute space.

We assume preferences νi,z are constant over time and viewers know the zjt and ηjt of all

shows. We assume the unobserved νi,z are distributed N(X ′iΓz, Σz), where Σz is diagonal

and Xi is an L-vector of demographic characteristics (age, gender, household income and

number of adults and children, urban-residence status, education of head-of-household,

cable subscription level).

The second and third lines of equation (4) contain the state-dependence component

of the model, along with the idiosyncratic error εijt. The dummy variables Startijt,

Contijt, Sampleijt, and InProgressijt describe the viewer’s previous choice as it relates

to each of the current period’s network alternatives: Startijt = 1 if i was tuned to network

j at t−1 and the show on j starts in period t, Contijt = 1 if i was tuned to j and the show

on j is a continuation from last period, Sampleijt = 1 if i was tuned to j and the show on

j is entering its second quarter-hour and is longer than 30 minutes, and InProgressijt = 1
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if i was not tuned to j and the show on j is a continuation from last period.

Both δStart,i and δCont,i are functions of the demographic variables Xi:

δStart,i = X ′iΓδ , and

δCont,i = δStart,i + δCont .
(5)

For parsimony, δStart,i serves as a “base” measure of persistence for viewer i, and δCont

is the incremental cost of leaving a continuing show that was watched last period. We

expect δCont > 0, δSample < 0, and δInProgress < 0.

The utility from a nonnetwork show has the same structure as utility from a network

show. Because our data does not specify which nonnetwork channel is watched, we use

the expected maximum utility over the Ni nonnetwork options available to individual i.

The utility from each nonnetwork channel, indexed by j′ = 1, . . . , Ni, is

uij′t = ηNon + (δMid,iMidt + δHour,iHourt) I{yi,j′,t−1 = 1}+ εij′t, (6)

where ηNon is common across all Ni options, Hourt = 1 if t is the hour’s first quarter-hour,

Midt = 1−Hourt, I{·} is an indicator function, and

δMid,i = δStart,i + δMid

δHour,i = δStart,i + δHour .
(7)

We expect δHour < δMid because more shows are continuations during the hour than on

the hour. Assuming {εij′t}Nij′=1 are independently distributed type I extreme value, the

expected maximum is

ui6t = log

 Ni∑
j′=1

exp(uij′t − εij′t)

+ εi6t. (8)

Substituting equation (6) into equation (8) yields

ui6t = ηNon + log [Ni − 1 + exp ((δMid,iMidt + δHour,iHourt)I{yi,6,t−1 = 1})] + εi6t (9)

because yi,j′,t−1 = 1 is satisfied by one j′ when yi,6,t−1 = 1 and zero j′ otherwise. We

model Ni = exp(νi,N) as unobserved heterogeneity with νi,N ∼ N(X ′iΓN , exp(X ′iΓσN )2).
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Finally, utility from the j = 1 nonviewing option differs among individuals according

to their previous choice, the time of day, the day of the week, and unobserved tastes for

the outside alternative, νi,Out ∼ N(X ′iΓOut, σ
2
Out):

ui1t = X ′iΓ9Hour9t +X ′iΓ10Hour10t +X ′iΓDayDayt

+ηOut,t + δOutI{yi,1,t−1 = 1}+ νi,Out + εi1t ,
(10)

where the variables Hour9t and Hour10t indicate t is in the 9:00 to 10:00 hour and 10:00

to 11:00 hour, respectively, the variable Dayt is a vector of length five with all zeros except

for a one in the current day’s position, and ΓDay is an L by five parameter matrix. The

time slot and day effects differ across demographic segments. For example, children go to

bed earlier than adults.

Goettler and Shachar (2001) estimate the model using maximum simulated likeli-

hood and use the Bayesian information criterion to determine that the latent-attribute

space has four dimensions. As in factor analysis, the attribute space can be rotated to

yield interpretable dimensions. Three of the dimensions appear to represent plot com-

plexity, degree of realism, and age (of characters and viewers). The fourth dimension is

harder to interpret, but appeals to urban, educated men aged 18 to 34. See Goettler and

Shachar (2001) for plots depicting the shows’ estimated locations and for tables reporting

estimates of the other parameters.

We forecast ratings for each prime-time show during the week of November 9, 1992,

given a candidate schedule Y , by aggregating predicted choices for each of the 3,286 view-

ers used in the estimation. For each viewer, we randomly draw an ideal point νi from the

estimated distribution of ideal points, which is conditional on the viewer’s demographics

Xi. We then compute the viewer’s probability of watching each show. Let yi·t denote the

response vector, such that for j = 1, . . . , J, yijt = 1 if i chooses j at time t and yijt = 0

otherwise. Because the additive stochastic utility term in the model is type I extreme

value, the probability of viewer i with preference vector νi choosing yijt = 1 at time t
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conditional on her previous choice of yi,·,t−1 is of the convenient form

f(yijt = 1|θ̂, yi,·,t−1, Yjt, νi) =
exp(ūijt(θ̂; yi,·,t−1, Yjt, νi))

J∑
j′=1

exp(ūij′t(θ̂; yi,·,t−1, Yj′t, νi))
, (11)

where θ̂ is the vector of estimated parameters, and ūijt(θ̂; yi,·,t−1, Yjt, νi) is the non-

stochastic component of utility for viewer i watching choice j at time t with schedule

Y , conditional on having chosen yi,·,t−1 last period.

State dependence implies the i’s choice in period t is conditional on her choice

from the previous period. The marginal probability s(yijt = 1|θ̂, Yjt, νi) is therefore the

probability-weighted average of the conditional probabilities in equation (11). Explicitly,

s(yijt = 1|θ̂, Y, νi) =
∑

ŷi,·,t−1∈(1,...,J)

[
s(ŷi,·,t−1|θ̂, Y, νi) · f(yijt = 1|θ̂, ŷi,·,t−1, Yjt, νi)

]
. (12)

We could alternatively draw random logit errors and simulate the full sequence of choices.

This alternative, however, would introduce simulation error.

We convert the viewer probabilities in equation (12) to expected network ratings for

network j in period t by averaging s(yijt = 1|θ̂, Y, νi) over all n viewers. Letting rt(j; θ̂, Y )

denote the ratings for network j under schedule Y , we have

rt(j; θ̂, Y, (ν1, . . . , νn)) =
1

n

n∑
i=1

s(yijt = 1|θ̂, Xi, Y, νi) . (13)

To obtain ratings specific to a demographic segment D, as needed to predict revenues

using equation (3), we sum only over consumers in the target segment:

rt(j,D; θ̂, Y, (ν1, . . . , νn)) =

n∑
i=1

s(yijt = 1|θ̂, Xi, Y, νi) I(Xi = D)

n∑
i=1
I(Xi = D)

. (14)

Appendix B: Finding Best-response Schedules

Each network chooses a schedule from its strategy space—the set of feasible schedules for

shows during the week of November 9, 1992—to maximize its objective function. Possible

objective functions are profits, advertisement revenue, and average ratings. Each of these
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payoff functions requires predicting the ratings of the candidate schedules in the strategy

space, as described in Appendix A.

The most obvious approach to finding the optimal schedule is to compute the payoff

for each feasible schedule and select the schedule with the highest payoff. Each network

airs about 20 prime-time shows yielding approximately 20! = 2.4× 1018 candidate sched-

ules. Optimistically assuming each schedule’s payoff can be computed in one second, this

approach would require 77 billion years to find the optimal schedule for a single network.

We instead implement an “iterative improvements” approach of combinatoric opti-

mization to find approximate best-response schedules. Given an initial schedule, we find

and execute ratings-improving swaps of continuous blocks of shows (ranging in length

from 30 minutes to 3 hours) until no more ratings-improving swaps exist. This process is

sure to converge because the number of possible schedules is finite. Thus a schedule with

a (weakly) maximum payoff exists. If only payoff-improving changes are executed, then

in finite time, either the optimal schedule will be reached, or the process will terminate

at a sub-optimal schedule that single block swaps cannot improve. The possibility of

terminating at a sub-optimal schedule is the sense in which this algorithm is an approx-

imate (or local) solution. We use the best terminal schedule obtained from starting at a

set of initial schedules that includes the network’s current schedule and several randomly

generated ones.

The approximate best-response schedule is not unique: if the algorithm were to

change the order of show-block swappings, the terminating schedule would be different.

Accordingly, we focus on characteristics of the best-response schedules that are invariant

to the order in which blocks are swapped.

We also considered extending the algorithm to permit combinations of two simul-

taneous swaps (involving 3 or 4 continuous blocks of shows). We found no improvements

relative to the faster algorithm that only swaps pairs of show-blocks.
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